On parameterized generalized skew-Hermitian triangular splitting iteration method for singular and nonsingular saddle point problems
暂无分享,去创建一个
[1] Yujiang Wu,et al. On semi-convergence of generalized skew-Hermitian triangular splitting iteration methods for singular saddle-point problems , 2014, 1402.5480.
[2] Zhi-Ru Ren,et al. Generalized skew‐Hermitian triangular splitting iteration methods for saddle‐point linear systems , 2014, Numer. Linear Algebra Appl..
[3] ZHI-HAO CAO. On the Convergence of General Stationary Linear Iterative Methods for Singular Linear Systems , 2007, SIAM J. Matrix Anal. Appl..
[4] Matthias Heinkenschloss,et al. Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .
[5] Yang Cao,et al. On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems , 2009, J. Comput. Appl. Math..
[6] Jun Zou,et al. An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..
[7] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .
[8] Naimin Zhang,et al. Constraint preconditioners for solving singular saddle point problems , 2013, J. Comput. Appl. Math..
[9] Yimin Wei,et al. Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..
[10] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[11] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[12] Jianjun Zhang,et al. A class of Uzawa-SOR methods for saddle point problems , 2010, Appl. Math. Comput..
[13] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[14] Zhao-Zheng Liang,et al. Modified unsymmetric SOR method for saddle-point problems , 2014, Appl. Math. Comput..
[15] E. Haber,et al. Numerical methods for volume preserving image registration , 2004 .
[16] Zhong-Zhi Bai,et al. Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems , 2009, J. Comput. Appl. Math..
[17] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[18] Zhong-Zhi Bai,et al. On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.
[19] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[20] Bing Zheng,et al. On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .
[21] Guo-Feng Zhang,et al. Preconditioned AHSS iteration method for singular saddle point problems , 2013, Numerical Algorithms.
[22] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[23] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[24] Zhao-Zheng Liang,et al. On block-diagonally preconditioned accelerated parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..
[25] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[26] Ulrich L. Rohde,et al. Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .
[27] Zhong-Zhi Bai,et al. Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..
[28] Gene H. Golub,et al. Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..
[29] Naimin Zhang,et al. A generalized preconditioned HSS method for singular saddle point problems , 2013, Numerical Algorithms.
[30] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[31] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[32] Qingqing Zheng,et al. A new SOR-Like method for the saddle point problems , 2014, Appl. Math. Comput..
[33] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[34] Yang Cao,et al. A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..
[35] Li Wang,et al. Skew-Hermitian Triangular Splitting Iteration Methods for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts , 2004 .
[36] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[37] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[38] Guo-Feng Zhang,et al. A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..
[39] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.