On parameterized generalized skew-Hermitian triangular splitting iteration method for singular and nonsingular saddle point problems

Recently, Krukier et al. (2014) and Dou et al. (2014) have studied the generalized skew-Hermitian triangular splitting (GSTS) iteration method for nonsingular and singular saddle point problems, respectively. In this paper, we further extend the GSTS method to a parameterized GSTS (PGSTS) method for solving non-Hermitian nonsingular and singular saddle point problems. By singular value decomposition technique, we derive conditions of the new iterative method for guaranteeing the convergence for non-Hermitian nonsingular saddle point problems and its semi-convergence for singular saddle point problems, respectively. In addition, the choice of the acceleration parameters in a practical manner is studied. Numerical experiments are provided, which further confirm our theoretical results and show the new method is feasible and effective for non-Hermitian nonsingular or singular saddle point problems.

[1]  Yujiang Wu,et al.  On semi-convergence of generalized skew-Hermitian triangular splitting iteration methods for singular saddle-point problems , 2014, 1402.5480.

[2]  Zhi-Ru Ren,et al.  Generalized skew‐Hermitian triangular splitting iteration methods for saddle‐point linear systems , 2014, Numer. Linear Algebra Appl..

[3]  ZHI-HAO CAO On the Convergence of General Stationary Linear Iterative Methods for Singular Linear Systems , 2007, SIAM J. Matrix Anal. Appl..

[4]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[5]  Yang Cao,et al.  On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems , 2009, J. Comput. Appl. Math..

[6]  Jun Zou,et al.  An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..

[7]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[8]  Naimin Zhang,et al.  Constraint preconditioners for solving singular saddle point problems , 2013, J. Comput. Appl. Math..

[9]  Yimin Wei,et al.  Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..

[10]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[11]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[12]  Jianjun Zhang,et al.  A class of Uzawa-SOR methods for saddle point problems , 2010, Appl. Math. Comput..

[13]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[14]  Zhao-Zheng Liang,et al.  Modified unsymmetric SOR method for saddle-point problems , 2014, Appl. Math. Comput..

[15]  E. Haber,et al.  Numerical methods for volume preserving image registration , 2004 .

[16]  Zhong-Zhi Bai,et al.  Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems , 2009, J. Comput. Appl. Math..

[17]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[18]  Zhong-Zhi Bai,et al.  On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.

[19]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[20]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[21]  Guo-Feng Zhang,et al.  Preconditioned AHSS iteration method for singular saddle point problems , 2013, Numerical Algorithms.

[22]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[23]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[24]  Zhao-Zheng Liang,et al.  On block-diagonally preconditioned accelerated parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..

[25]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[26]  Ulrich L. Rohde,et al.  Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .

[27]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[28]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[29]  Naimin Zhang,et al.  A generalized preconditioned HSS method for singular saddle point problems , 2013, Numerical Algorithms.

[30]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[31]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[32]  Qingqing Zheng,et al.  A new SOR-Like method for the saddle point problems , 2014, Appl. Math. Comput..

[33]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[34]  Yang Cao,et al.  A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..

[35]  Li Wang,et al.  Skew-Hermitian Triangular Splitting Iteration Methods for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts , 2004 .

[36]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[37]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[38]  Guo-Feng Zhang,et al.  A generalization of parameterized inexact Uzawa method for singular saddle point problems , 2013, Appl. Math. Comput..

[39]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.