On largest volume simplices and sub-determinants

We show that the problem of finding the simplex of largest volume in the convex hull of n points in Qd can be approximated with a factor of O(log d)d/2 in polynomial time. This improves upon the previously best known approximation guarantee of d(d−1)/2 by Khachiyan. On the other hand, we show that there exists a constant c > 1 such that this problem cannot be approximated with a factor of cd, unless P = NP. Our hardness result holds even if n = O(d), in which case there exists a cd-approximation algorithm that relies on recent sampling techniques, where c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d × n matrix.

[1]  N. Hardy Odd cycles in planar graphs , 2005 .

[2]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[3]  Marek Karpinski,et al.  Improved Approximation Lower Bounds on Small Occurrence Optimization , 2003, Electron. Colloquium Comput. Complex..

[4]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[5]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[6]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[7]  Mohammad R. Salavatipour,et al.  Approximability of Packing Disjoint Cycles , 2007, ISAAC.

[8]  Ioannis Koutis,et al.  Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope , 2006, Inf. Process. Lett..

[9]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[10]  Irwin E. Schochetman,et al.  On the minors of an incidence matrix and its Smith normal form , 1995 .

[11]  Carsten Moldenhauer,et al.  Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number , 2014, FSTTCS.

[12]  Jean-Sébastien Sereni,et al.  Min-Max Relations for Odd Cycles in Planar Graphs , 2011, SIAM J. Discret. Math..

[13]  Aleksandar Nikolov,et al.  The geometry of differential privacy: the sparse and approximate cases , 2012, STOC '13.

[14]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[15]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[16]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[17]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[18]  Bruce A. Reed,et al.  Approximate Min-max Relations for Odd Cycles in Planar Graphs , 2005, IPCO.

[19]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[20]  Luis Rademacher,et al.  Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[21]  Alberto Caprara,et al.  Packing triangles in bounded degree graphs , 2002, Inf. Process. Lett..

[22]  J. Spencer Six standard deviations suffice , 1985 .

[23]  Leonid Khachiyan,et al.  On the Complexity of Approximating Extremal Determinants in Matrices , 1995, J. Complex..

[24]  Nikhil Bansal,et al.  Constructive Algorithms for Discrepancy Minimization , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[25]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[26]  Aleksandar Nikolov,et al.  Approximating Hereditary Discrepancy via Small Width Ellipsoids , 2013, SODA.

[27]  J. Matousek,et al.  The determinant bound for discrepancy is almost tight , 2011, 1101.0767.

[28]  Edward F. Schmeichel,et al.  On the maximum number of independent edges in cubic graphs , 1982, Discret. Math..

[29]  Malik Magdon-Ismail,et al.  Exponential Inapproximability of Selecting a Maximum Volume Sub-matrix , 2011, Algorithmica.

[30]  Peter Gritzmann,et al.  Largest j-Simplices in n-Polytopes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[31]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[32]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[33]  Peter Gritzmann,et al.  Largestj-simplices inn-polytopes , 1995, Discret. Comput. Geom..

[34]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[35]  Peter Gritzmann,et al.  Oracle-polynomial-time approximation of largest simplices in convex bodies , 2000, Discret. Math..

[36]  Bruce A. Reed,et al.  Odd cycle packing , 2010, STOC '10.

[37]  Asa Packer Polynomial-time approximation of largest simplices in V-polytopes , 2004, Discret. Appl. Math..

[38]  S. Vempala,et al.  Hit-and-Run from a Corner , 2006 .

[39]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[40]  László Lovász,et al.  Discrepancy of Set-systems and Matrices , 1986, Eur. J. Comb..

[41]  Leonid Khachiyan,et al.  On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..

[42]  Asa Packer NP -Hardness of Largest Contained and Smallest Containing Simplices for V- and H-Polytopes , 2002, Discret. Comput. Geom..

[43]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[44]  Thomas Rothvoß,et al.  Approximating Bin Packing within O(log OPT * Log Log OPT) Bins , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.