The expressive power of first-order topological languages

We consider the expressive power of the first-order structure 〈Ω, C〉 where Ω is either of two of different domains of extended regions in Euclidean space, and C(x,y) is the topological relation “Region x is in contact with region y.” We prove two main theorems: • Let P[Q] be the domain of bounded, non-empty, rational polyhedra in twoor threedimensional Euclidean space. A relation Γ over P[Q] is definable in the structure 〈P[Q], C〉 if and only if Γ is arithmetic and invariant under rational PL-homeomorphisms of the space to itself. We also extend this result to a number of other domains, including the domain of all polyhedra and the domain of semi-algebraic regions. • Let R be the space of bounded, non-empty, closed regular regions. in n-dimensional Euclidean space. Any analytical relation over lower-dimensional (i.e. empty interior) compact point sets that is invariant under homeomorphism is implicitly definable in the structure 〈R, C〉.

[1]  Ian Pratt First-order qualitative spatial representation languages with convexity , 1999, Spatial Cogn. Comput..

[2]  Anthony G. Cohn,et al.  Describing Rigid Body Motions in a Qualitative Theory of Spatial Regions , 2000, AAAI/IAAI.

[3]  Ernest Davis,et al.  The Expressivity of Quantifying over Regions , 2006, J. Log. Comput..

[4]  Stefano Borgo,et al.  Mereogeometries: A Semantic Comparison , 2002 .

[5]  A. Grzegorczyk Undecidability of Some Topological Theories , 1951 .

[6]  Brandon Bennett,et al.  A Categorical Axiomatisation of Region-Based Geometry , 2001, Fundam. Informaticae.

[7]  J. Milnor Two Complexes Which are Homeomorphic But Combinatorially Distinct , 1961 .

[8]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[9]  Nicola Guarino,et al.  A Pointless Theory of Space Based on Strong Connection and Congruence , 1996, KR.

[10]  A. U. Frank,et al.  Qualitative Spatial Reasoning , 2008, Encyclopedia of GIS.

[11]  A. R. Turquette,et al.  Logic, Semantics, Metamathematics , 1957 .

[12]  Nicholas Mark Gotts,et al.  How Far Can We 'C'? Defining a 'Doughnut' Using Connection Alone , 1994, KR.

[13]  A. Markov,et al.  Insolubility of the Problem of Homeomorphy ∗ , 2001 .

[14]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.

[15]  T. D. Laguna Point, Line, and Surface, as Sets of Solids , 1922 .

[16]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[17]  Christoph Dornheim Undecidability of Plane Polygonal Mereotopology , 1998, KR.

[18]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[19]  R. Cooper Process and Reality , 2014 .

[20]  Iris Loeb,et al.  On Tarski's foundations of the geometry of solids , 2012, Bull. Symb. Log..

[21]  C. Thomassen The Jordan-Scho¨nflies theorem and the classification of surfaces , 1992 .

[22]  Christian Freksa,et al.  Qualitative spatial reasoning , 1990, Forschungsberichte, TU Munich.

[23]  Ernest Davis,et al.  Elementarily equivalent structures for topological languages over regions in Euclidean space , 2013, J. Log. Comput..

[24]  Ian Pratt-Hartmann,et al.  First-Order Mereotopology , 2007, Handbook of Spatial Logics.

[25]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .

[26]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[27]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[28]  Ian Pratt-Hartmann,et al.  Expressivity in Polygonal, Plane Mereotopology , 2000, J. Symb. Log..

[29]  Torsten Hahmann,et al.  Region-Based Theories of Space: Mereotopology and Beyond , 2012 .

[30]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .