A Deductive System for PC(ID)

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. This paper studies a deductive inference method for PC(ID), its propositional fragment.We introduce a formal proof system based on the sequent calculus (Gentzen-style deductive system) for this logic. As PC(ID) is an integration of classical propositional logic and propositional inductive definitions, our deductive system integrates inference rules for propositional calculus and definitions.We prove the soundness and completeness of this deductive system for a slightly restricted fragment of PC(ID). We also give a counter-example to show that cut-elimination does not hold in this proof system.

[1]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[2]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[3]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[4]  Eugenia Ternovska,et al.  Inductive situation calculus , 2004, Artif. Intell..

[5]  P. Martin-Löf Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .

[6]  Masami Hagiya,et al.  Foundation of logic programming based on inductive definition , 2009, New Generation Computing.

[7]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[8]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[9]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  K. COMPTON A Deductive System for Existential Least Fixpoint Logic , 1993, J. Log. Comput..

[11]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[12]  Maarten Mariën,et al.  On the Relation Between ID-Logic and Answer Set Programming , 2004, JELIA.

[13]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[14]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[15]  Sharad Malik,et al.  Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[16]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[17]  Kevin J. Compton,et al.  Stratified Least Fixpoint Logic , 1994, Theor. Comput. Sci..

[18]  Joost Vennekens,et al.  Well-Founded Semantics and the Algebraic Theory of Non-monotone Inductive Definitions , 2007, LPNMR.

[19]  Maurice Bruynooghe,et al.  Satisfiability Checking for PC(ID) , 2005, LPAR.

[20]  Hector J. Levesque,et al.  Competence in Knowledge Representation , 1982, AAAI.

[21]  Martin Gebser,et al.  Tableau Calculi for Answer Set Programming , 2006, ICLP.