Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network

[1] We study local time variation in high peak current lightning over land versus over ocean by using lightning locations from the World Wide Lightning Location Network (WWLLN). Optical lightning data from the photodiode detector on the Fast On-Orbit Recording of Transient Events (FORTE) satellite are used to determine the relative detection efficiency of the WWLLN for lightning events by region, as well as over land versus over ocean. We find that the peak lightning flash density varies for the different continents by up to 5 hours in local time. Because the WWLLN measures lightning strokes with large peak currents, the variation in local time of WWLLN-detected strokes suggests a similar variation in local time of transient luminous events (e.g., elves) and their effects on the lower ionosphere.

[1]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[2]  Robert H. Holzworth,et al.  Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study , 2006 .

[3]  J. Green,et al.  Optical observations of terrestrial lightning by the FORTE satellite photodiode detector , 2001 .

[4]  David M. Suszcynsky,et al.  FORTE observations of simultaneous VHF and optical emissions from lightning: Basic phenomenology , 2000 .

[5]  Richard E. Orville,et al.  Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-98 , 2001 .

[6]  P. Kintner,et al.  Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm: 1. Campaign overview and initial ionospheric results , 1985 .

[7]  H. Christian 11th International Conference on Atmospheric Electricity , 1999 .

[8]  T. Bell,et al.  Optical signatures of lightning-induced heating of the D region , 1992 .

[9]  E. Zipser,et al.  The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements , 2003 .

[10]  W. Koshak,et al.  The Optical Transient Detector (OTD): Instrument Characteristics and Cross-Sensor Validation , 2000 .

[11]  Robert H. Holzworth,et al.  Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth , 2006 .

[12]  Steven A. Rutledge,et al.  Cloud-to-Ground Lightning Activity in the Contiguous United States from 1995 to 1999 , 2001 .

[13]  Mengu Cho,et al.  Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere , 1998 .

[14]  John M. Hall,et al.  The Lightning Imaging Sensor , 1999 .

[15]  David M. Suszcynsky,et al.  Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager , 2001 .

[16]  Umran S. Inan,et al.  Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere , 1997 .

[17]  Umran S. Inan,et al.  Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization , 1993 .

[18]  C. Rodger,et al.  Location accuracy of long distance VLF lightning locationnetwork , 2004 .

[19]  Yukihiro Takahashi,et al.  Elves : Lightning-induced transient luminous events in the lower ionosphere , 1996 .

[20]  J. C. Devenport,et al.  Satellite observations of transionospheric pulse pairs , 1995 .

[21]  R. Winglee,et al.  Lightning whistler waves in the high‐latitude magnetosphere , 1999 .

[22]  Abram R. Jacobson,et al.  FORTE observations of lightning radio‐frequency signatures: Capabilities and basic results , 1999 .

[23]  D. Boccippio,et al.  Global Lightning Variations Caused by Changes in Thunderstorm Flash Rate and by Changes in the Number of Thunderstorms , 2000 .

[24]  Zhang Yijun,et al.  A QUASI-STATIC MODEL OF GLOBAL ATMOSPHERIC ELECTRICITY , 1990 .

[25]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[26]  Craig J. Rodger,et al.  Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade , 2005 .

[27]  Xuan-Min Shao,et al.  Phenomenology of transionospheric pulse pairs: Further observations , 1998 .

[28]  M. Rycroft,et al.  Lower ionospheric modification by lightning‐EMP: Simulation of the night ionosphere over the United States , 2001 .

[29]  T. Bell,et al.  Heating and ionization of the lower ionosphere by lightning , 1991 .

[30]  Walter A. Petersen,et al.  Regional Variability in Tropical Convection: Observations from TRMM , 2001 .

[31]  U. Inan,et al.  Elves triggered by positive and negative lightning discharges , 1999 .

[32]  James B. Brundell,et al.  VLF lightning location by time of group arrival (TOGA) at multiple sites , 2002 .

[33]  S. Curtis,et al.  Direct observation of magnetospheric electron precipitation stimulated by lightning , 1986 .

[34]  H. J. Hagger,et al.  Electromagnetic Waves in Stratified Media , 1996 .

[35]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[36]  H. Hirosawa,et al.  Balloon Observations of Temporal Variation in the Global Circuit Compared to Global Lightning Activity , 2005 .

[37]  P. Kintner,et al.  Anomalous optical events detected by rocket-borne sensor in the WIPP campaign , 1991 .

[38]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[39]  R. Fernsler,et al.  Models of lightning-produced sprites and elves , 1996 .

[40]  D. Suszcynsky,et al.  SATELLITE-BASED GLOBAL LIGHTNING AND SEVERE STORM MONITORING USING VHF RECEIVERS , 2000 .

[41]  Robert H. Holzworth,et al.  WWLL global lightning detection system: Regional validation study in Brazil , 2004 .

[42]  P. Hays,et al.  A quasi-static model of global atmospheric electricity 1. The lower atmosphere , 1979 .

[43]  Steven J. Goodman,et al.  Regional Differences in Tropical Lightning Distributions , 2000 .