Accurate dipole moments from Hartree-Fock calculations by means of class IV charges

Charge Model 2 (CM2) is parameterized for Hartree–Fock calculations with the correlation-consistent polarized valence double zeta (cc-pVDZ) basis set. The resulting charge model has an RMS error of 0.18 D over a training set of 198 polar molecules. The charge model is additionally applied to 8 nucleic acid bases and methyl azide to test its performance for nitrogen-containing compounds not found in the training set. The results demonstrate that this new CM2 model based on ab initio Hartree–Fock calculations is robust in predicting the charge distributions of such molecules. Comparison of CM2 results for the nitrogen-containing test set with those from a previous charge model, charge model 1 (CM1) based on AM1 (Austin model 1) and PM3 (parameterized model 3) wave functions, indicate that the CM2 charges are more accurate than those from the previous model.

[1]  R. C. Johnson,et al.  Electron-Correlated Calculations of Electric Properties of Nucleic Acid Bases , 1996 .

[2]  F. J. Luque,et al.  Self‐consistent reaction field computation of the reactive characteristics of DNA bases in water , 1993 .

[3]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[4]  James J. P. Stewart,et al.  Bond indices and valency , 1973 .

[5]  Peter A. Kollman,et al.  Calculation of Chloroform/Water Partition Coefficients for the N-Methylated Nucleic Acid Bases , 1997 .

[6]  Michael J. S. Dewar,et al.  AM1 parameters for sulfur , 1990 .

[7]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[8]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.

[9]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[10]  Robert S. Mulliken,et al.  Electronic Structures of Molecules X. Aldehydes, Ketones and Related Molecules , 1935 .

[11]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian‐type orbital sets. III. Second‐row atoms from Li through ne , 1980 .

[12]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[13]  Donald G. Truhlar,et al.  A class IV charge model for molecular excited states , 1999 .

[14]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[15]  Michael J. S. Dewar,et al.  AM1 parameters for phosphorus , 1989 .

[16]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[17]  David J. Giesen,et al.  Class IV charge models: A new semiempirical approach in quantum chemistry , 1995, J. Comput. Aided Mol. Des..

[18]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[19]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems I. General theory , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Donald G. Truhlar,et al.  AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution , 1992, J. Comput. Aided Mol. Des..

[21]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[22]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[23]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[24]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[25]  Michael J. S. Dewar,et al.  Extension of AM1 to the halogens , 1988 .

[26]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[27]  Jeffrey A. Nichols,et al.  Quantum mechanics in chemistry , 1997 .

[28]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[29]  Jerzy Leszczynski,et al.  Molecular Structure and Vibrational IR Spectra of Cytosine and Its Thio and Seleno Analogues by Density Functional Theory and Conventional ab initio Calculations , 1996 .

[30]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[31]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[32]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[33]  G. D. Hawkins,et al.  New methods for potential functions for simulating biological molecules , 1997 .

[34]  S H Kim,et al.  Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data. , 1990, Journal of molecular biology.

[35]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[36]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[37]  Jiabo Li,et al.  MIDI! basis set for silicon, bromine, and iodine , 1998 .

[38]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[39]  C. Cramer,et al.  Application of a universal solvation model to nucleic acid bases: comparison of semiempirical molecular orbital theory, ab initio Hartree-Fock theory, and density functional theory. , 1999, Biophysical chemistry.