Noise-Aware Variational Eigensolvers: A Dissipative Route for Lattice Gauge Theories

We propose a novel variational ansatz for the ground state preparation of the $\mathbb{Z}_2$ lattice gauge theory (LGT) in quantum simulators (QSs). It combines dissipative and unitary operations in a completely deterministic scheme with a circuit complexity that does not scale with the size of the considered lattice. We find that, with very few variational parameters, the ansatz is able to achieve $>\!99\%$ fidelity with the true ground state in both the confined and deconfined phase of the $\mathbb{Z}_2$ LGT. We benchmark our proposal against the unitary Hamiltonian variational ansatz (HVA), and find a clear advantage of our scheme, especially for few variational parameters as well as for large system sizes. After performing a finite-size scaling analysis, we show that our dissipative variational ansatz is able to predict critical exponents with accuracies that surpass the capabilities of the HVA. Furthermore, we investigate the ground-state preparation algorithm in the presence of circuit-level noise and determine variational error thresholds, which determine error rates $p_{L}$, below which it would be beneficial to increase the number of layers $L \mapsto L+1$. Comparing those values to quantum gate errors $p$ of state-of-the-art quantum processors, we provide a detailed assessment of the prospects of our scheme to explore the $\mathbb{Z}_2$ LGT on near-term devices.

[1]  Minh C. Tran,et al.  Improved Digital Quantum Simulation by Non-Unitary Channels , 2023, ArXiv.

[2]  Areeq I. Hasan,et al.  Best Practices for Quantum Error Mitigation with Digital Zero-Noise Extrapolation , 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE).

[3]  Jad C. Halimeh,et al.  Quantum Computing for High-Energy Physics: State of the Art and Challenges , 2023, PRX Quantum.

[4]  L. Lamata,et al.  Digital-Analog Quantum Computation with Arbitrary Two-Body Hamiltonians , 2023, 2307.00966.

[5]  A. Alavi,et al.  Orders of magnitude increased accuracy for quantum many-body problems on quantum computers via an exact transcorrelated method , 2023, Physical Review Research.

[6]  Rui Li,et al.  A Review on Quantum Approximate Optimization Algorithm and its Variants , 2023, 2306.09198.

[7]  Jad C. Halimeh,et al.  Spin exchange-enabled quantum simulator for large-scale non-Abelian gauge theories , 2023, 2305.06373.

[8]  B. Bjork,et al.  A Race-Track Trapped-Ion Quantum Processor , 2023, Physical Review X.

[9]  Y. Kuno,et al.  Interplay between lattice gauge theory and subsystem codes , 2023, Physical Review B.

[10]  M. Lukin,et al.  High-fidelity parallel entangling gates on a neutral-atom quantum computer , 2023, Nature.

[11]  F. Brandão,et al.  Quantum Thermal State Preparation , 2023, 2303.18224.

[12]  J. Bringewatt,et al.  Randomized measurement protocols for lattice gauge theories , 2023, Quantum.

[13]  T. Cubitt Dissipative ground state preparation and the Dissipative Quantum Eigensolver , 2023, 2303.11962.

[14]  D. M. Ramo,et al.  Simulating non-unitary dynamics using quantum signal processing with unitary block encoding , 2023, 2303.06161.

[15]  N. Killoran,et al.  Hamiltonian variational ansatz without barren plateaus , 2023, Quantum.

[16]  B. Neyenhuis,et al.  Topological Order from Measurements and Feed-Forward on a Trapped Ion Quantum Computer , 2023, 2302.01917.

[17]  D. Zueco,et al.  Circuit Complexity through phase transitions: consequences in quantum state preparation , 2023, 2301.04671.

[18]  J. Cirac,et al.  Quantum advantage and stability to errors in analogue quantum simulators , 2022, 2212.04924.

[19]  M. Lukin,et al.  Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator , 2022, Physical Review X.

[20]  D. Gottesman Opportunities and Challenges in Fault-Tolerant Quantum Computation , 2022, 2210.15844.

[21]  C. Monroe,et al.  Demonstration of three- and four-body interactions between trapped-ion spins , 2022, Nature Physics.

[22]  A. Alexandru,et al.  How many quantum gates do gauge theories require? , 2022, Physical Review D.

[23]  Michael J. Hoffmann,et al.  Suppressing quantum errors by scaling a surface code logical qubit , 2022, Nature.

[24]  A. Green,et al.  Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer , 2022, Nature Communications.

[25]  P. Zoller,et al.  Propagation of errors and quantitative quantum simulation with quantum advantage , 2022, Quantum Science and Technology.

[26]  M. Lukin,et al.  Peer Review File Manuscript Title: A quantum processor based on coherent transport of entangled atom arrays Reviewer Comments & Author Rebuttals , 2022 .

[27]  Yu Tong,et al.  Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices , 2022, PRX Quantum.

[28]  J. Preskill,et al.  Quantum Simulation for High-Energy Physics , 2022, PRX Quantum.

[29]  R. Kueng,et al.  The randomized measurement toolbox , 2022, Nature Reviews Physics.

[30]  G. Sierra,et al.  Algebraic Bethe Circuits , 2022, Quantum.

[31]  Joel J. Wallman,et al.  Efficiently improving the performance of noisy quantum computers , 2022, Quantum.

[32]  N. S. Blunt,et al.  Multi-qubit entanglement and algorithms on a neutral-atom quantum computer , 2021, Nature.

[33]  Minh C. Tran,et al.  Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions , 2021, PRX Quantum.

[34]  Jian-Wei Pan,et al.  Realization of an Error-Correcting Surface Code with Superconducting Qubits. , 2021, Physical review letters.

[35]  Matteo M. Wauters,et al.  Two-dimensional $\mathbb{Z}_2$ lattice gauge theory on a near-term quantum simulator: variational quantum optimization, confinement, and topological order , 2021, 2112.11787.

[36]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[37]  S. Girvin Introduction to quantum error correction and fault tolerance , 2021, SciPost Physics Lecture Notes.

[38]  Jakob S. Kottmann,et al.  A quantum computing view on unitary coupled cluster theory. , 2021, Chemical Society reviews.

[39]  Peter D. Johnson,et al.  Computing Ground State Properties with Early Fault-Tolerant Quantum Computers , 2021, Quantum.

[40]  Theodore J. Yoder,et al.  Scalable error mitigation for noisy quantum circuits produces competitive expectation values , 2021, Nature Physics.

[41]  B. Neyenhuis,et al.  Dynamical topological phase realized in a trapped-ion quantum simulator , 2021, Nature.

[42]  B. Neyenhuis,et al.  Realization of Real-Time Fault-Tolerant Quantum Error Correction , 2021, Physical Review X.

[43]  M. Benedetti,et al.  Filtering variational quantum algorithms for combinatorial optimization , 2021, Quantum Science and Technology.

[44]  M. Lewenstein,et al.  Cold atoms meet lattice gauge theory , 2021, Philosophical Transactions of the Royal Society A.

[45]  M. Lukin,et al.  Probing topological spin liquids on a programmable quantum simulator , 2021, Science.

[46]  H. Neven,et al.  Realizing topologically ordered states on a quantum processor , 2021, Science.

[47]  A. Sandvik,et al.  Z2 topological order and first-order quantum phase transitions in systems with combinatorial gauge symmetry , 2021, Physical Review B.

[48]  E. Solano,et al.  Digital-Analog Quantum Simulation of Fermionic Models , 2021, Physical Review Applied.

[49]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[50]  A. Roggero,et al.  Imaginary Time Propagation on a Quantum Chip , 2021, 2102.12260.

[51]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[52]  L. C. C'eleri,et al.  Digital-Analog Quantum Simulations Using the Cross-Resonance Effect , 2020, PRX Quantum.

[53]  Shannon Whitlock,et al.  Quantum simulation and computing with Rydberg-interacting qubits , 2020, AVS Quantum Science.

[54]  Statistics of the Two-Dimensional Ferromagnet , 2020, Master of Modern Physics.

[55]  N. Killoran,et al.  Estimating the gradient and higher-order derivatives on quantum hardware , 2020, 2008.06517.

[56]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[57]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[58]  T. Fukuhara,et al.  Tools for quantum simulation with ultracold atoms in optical lattices , 2020, Nature Reviews Physics.

[59]  Kevin J. Sung,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[60]  Robert A. Lang,et al.  On the order problem in construction of unitary operators for the variational quantum eigensolver. , 2020, Physical chemistry chemical physics : PCCP.

[61]  Alicia J. Kollár,et al.  Quantum Simulators: Architectures and Opportunities , 2019, 1912.06938.

[62]  B. Lekitsch,et al.  Shuttling-based trapped-ion quantum information processing , 2019, AVS Quantum Science.

[63]  F. Verstraete,et al.  Simulating lattice gauge theories within quantum technologies , 2019, The European Physical Journal D.

[64]  Francesco A. Evangelista,et al.  Exact parameterization of fermionic wave functions via unitary coupled cluster theory. , 2019, The Journal of chemical physics.

[65]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[66]  M. Bañuls,et al.  Review on novel methods for lattice gauge theories , 2019, Reports on progress in physics. Physical Society.

[67]  Joongheon Kim,et al.  A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and Applications , 2019, 2019 International Conference on Information and Communication Technology Convergence (ICTC).

[68]  G. Santoro,et al.  Optimal working point in digitized quantum annealing , 2019, Physical Review B.

[69]  C. Monroe,et al.  Towards analog quantum simulations of lattice gauge theories with trapped ions , 2019, Physical Review Research.

[70]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[71]  Geoff J. Pryde,et al.  Photonic quantum information processing: A concise review , 2019, Applied Physics Reviews.

[72]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[73]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[74]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[75]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[76]  C. Ryan-Anderson Quantum Algorithms, Architecture, and Error Correction , 2018, 1812.04735.

[77]  Jan-Michael Reiner,et al.  Finding the ground state of the Hubbard model by variational methods on a quantum computer with gate errors , 2018, Quantum Science and Technology.

[78]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[79]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[80]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[81]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[82]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[83]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[84]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[85]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[86]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[87]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[88]  J. Ignacio Cirac,et al.  Faster ground state preparation and high-precision ground energy estimation with fewer qubits , 2017, Journal of Mathematical Physics.

[89]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[90]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[91]  Jarrod R. McClean,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2017, 1707.06408.

[92]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[93]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[94]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[95]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[96]  Eric R. Anschuetz,et al.  Atom-by-atom assembly of defect-free one-dimensional cold atom arrays , 2016, Science.

[97]  Jun Li,et al.  Hybrid Quantum-Classical Approach to Quantum Optimal Control. , 2016, Physical review letters.

[98]  Antoine Browaeys,et al.  An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays , 2016, Science.

[99]  T. Sreeraj,et al.  Lattice Gauge Theories and Spin Models , 2016, 1604.00315.

[100]  J. S. Pedernales,et al.  Digital-Analog Quantum Simulation of Spin Models in Trapped Ions , 2016, Scientific Reports.

[101]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[102]  Nissim Ofek,et al.  Comparing and combining measurement-based and driven-dissipative entanglement stabilization , 2015, 1509.00860.

[103]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[104]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[105]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[106]  C. Park,et al.  Ultrafast Ramsey interferometry to implement cold atomic qubit gates , 2014, Scientific Reports.

[107]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[108]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[109]  Matthew D. Schwartz,et al.  Quantum Field Theory and the Standard Model , 2013 .

[110]  M. Oberthaler,et al.  Dissipative preparation of phase- and number-squeezed states with ultracold atoms , 2013, 1309.6436.

[111]  S. Blundell Field Theories of Condensed Matter Physics, 2nd edn., by Eduardo Fradkin , 2013 .

[112]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[113]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[114]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[115]  X. Wen Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons , 2012, 1210.1281.

[116]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[117]  M. Okawa,et al.  The string tension from smeared Wilson loops at large N , 2012, 1206.0049.

[118]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[119]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[120]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[121]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[122]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[123]  R. Ozeri,et al.  The trapped-ion qubit tool box , 2011, 1106.1190.

[124]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[125]  O. Melchert,et al.  autoScale.py - A program for automatic finite-size scaling analyses: A user's guide , 2009, 0910.5403.

[126]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[127]  Xiao-Gang Wen,et al.  Topological entanglement Rényi entropy and reduced density matrix structure. , 2009, Physical review letters.

[128]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[129]  Laurence Jacobs,et al.  Lattice gauge theories: an introduction , 2008 .

[130]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[131]  H. Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007, quant-ph/0703272.

[132]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[133]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[134]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[135]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[136]  P. Zanardi,et al.  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[137]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[138]  E. Tosatti,et al.  Variational description of Mott insulators. , 2004, Physical review letters.

[139]  M. Stephanov,et al.  The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments , 2004 .

[140]  A. Hartmann,et al.  Low-temperature behavior of two-dimensional Gaussian Ising spin glasses , 2004, cond-mat/0402036.

[141]  Youjin Deng,et al.  Cluster Monte Carlo simulation of the transverse Ising model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[142]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[143]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[144]  Umesh V. Vazirani,et al.  Quantum Algorithms , 2001, LATIN.

[145]  A. Pelissetto,et al.  Critical phenomena and renormalization-group theory , 2000, cond-mat/0012164.

[146]  R. Feynman Simulating physics with computers , 1999 .

[147]  W. Cottingham,et al.  An Introduction to the Standard Model of Particle Physics , 1999 .

[148]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[149]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[150]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[151]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[152]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[153]  D. Gross Two-dimensional QCD is a string theory , 1992, hep-th/9212149.

[154]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[155]  H. Shiba,et al.  Variational Monte-Carlo Studies of Hubbard Model. III. Intersite Correlation Effects , 1990 .

[156]  Liu,et al.  Variational calculations for the square-lattice quantum antiferromagnet. , 1989, Physical review. B, Condensed matter.

[157]  Liang,et al.  Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. , 1988, Physical review letters.

[158]  C. Gros,et al.  Superconductivity in correlated wave functions. , 1988, Physical review. B, Condensed matter.

[159]  Elser,et al.  Simple variational wave functions for two-dimensional Heisenberg spin-(1/2 antiferromagnets. , 1988, Physical review letters.

[160]  W. Linden,et al.  Spin-correlations and low lying excited states of the spin-1/2 Heisenberg antiferromagnet on a square lattice , 1988 .

[161]  H. Shiba,et al.  Variational Monte-Carlo Studies of Hubbard Model. I , 1987 .

[162]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[163]  Fiore,et al.  Analysis of spin and gauge models with variational methods. , 1985, Physical review. D, Particles and fields.

[164]  E. Dagotto,et al.  Bethe-Peierls approximation for Lagrangian and Hamiltonian lattice models , 1984 .

[165]  J. Cardy,et al.  Variational calculations and the nature of the phase transition in Z(2) gauge theory , 1980 .

[166]  M. Creutz Asymptotic-freedom scales , 1980 .

[167]  Leonard Susskind,et al.  Fermion representation for the Z2 lattice gauge theory in 2+1 dimensions , 1980 .

[168]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[169]  L. Faddeev,et al.  Quantum inverse problem method. I , 1979 .

[170]  D. Horn,et al.  Hamiltonian approach to Z (N) lattice gauge theories , 1979 .

[171]  S. Elitzur,et al.  Impossibility of spontaneously breaking local symmetries , 1975 .

[172]  L. Susskind,et al.  Charge shielding and quark confinement in the massive schwinger model , 1975 .

[173]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[174]  David J. Gross,et al.  Dynamical symmetry breaking in asymptotically free field theories , 1974 .

[175]  G. Hooft A two-dimensional model for mesons , 1974 .

[176]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[177]  F. Wegner Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters , 1971 .

[178]  L. Pauling,et al.  THE RESONATING-VALENCE-BOND THEORY OF SUPERCONDUCTIVITY: CREST SUPERCONDUCTORS AND THROUGH SUPERCONDUCTORS* , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[179]  M. Gutzwiller,et al.  Correlation of Electrons in a Narrow s Band , 1965 .

[180]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .

[181]  R. Jastrow Many-Body Problem with Strong Forces , 1955 .

[182]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .

[183]  R. Peierls Zur Theorie der Metalle , 1933 .

[184]  J. Kattemölle,et al.  UvA-DARE (Digital Academic Repository) Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice , 2021 .

[185]  Joschka Roffe,et al.  Quantum error correction: an introductory guide , 2019, Contemporary Physics.

[186]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[187]  Jian Wang Foundations of the Quantum Chromodynamics , 2016 .

[188]  W. Marsden I and J , 2012 .

[189]  Dheera Venkatraman,et al.  An introduction to quantum error correction , 2006 .

[190]  Sumathi Rao,et al.  Field Theories in Condensed Matter Physics , 2001 .

[191]  P. Anderson,et al.  Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. , 1988, Physical review. B, Condensed matter.

[192]  M. P. Fry Gauge Invariance and Mass. , 1968 .

[193]  X. Wen Topological Orders in Rigid States * , 2022 .