New Generic Hybrids Based upon Genetic Algorithms

In this paper we propose some generic extensions to the general concept of a Genetic Algorithm. These biologically and sociologically inspired interrelated hybrids aim to make the algorithm more open for scalability on the one hand, and to retard premature convergence on the other hand without necessitating the development of new coding standards and operators for certain problems. Furthermore, the corresponding Genetic Algorithm is unrestrictedly included in all of the newly proposed hybrid variants under special parameter settings. The experimental part of the paper discusses the new algorithms for the Traveling Salesman Problem as a well documented instance of a multimodal combinatorial optimization problem achieving results which significantly outperform the results obtained with a conventional Genetic Algorithm using the same coding and operators.

[1]  Oliver Wendt Tourenplanung durch Einsatz naturanaloger Verfahren , 1995 .

[2]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[3]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[4]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Michael Affenzeller A New Approach to Evolutionary Computation: Segregative Genetic Algorithms (SEGA) , 2001, IWANN.

[7]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[8]  Eberhard Schöneburg,et al.  Genetische Algorithmen und Evolutionsstrategien - eine Einführung in Theorie und Praxis der simulierten Evolution , 1994 .

[9]  Michael Affenzeller,et al.  Segregative Genetic Algorithms (SEGA): A hybrid superstructure upwards compatible to genetic algorithms for retarding premature convergence , 2001, Int. J. Comput. Syst. Signals.

[10]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[13]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[14]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[15]  Michael Affenzeller TRANSFERRING THE CONCEPT OF SELECTIVE PRESSURE FROM EVOLUTIONARY STRATEGIES TO GENETIC ALGORITHMS , 2003 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .