From C58 to C62 and back: Stability, structural similarity, and ring current

An increasing number of observations show that non‐classical isomers may play an important role in the formation of fullerenes and their exo‐ and endo‐derivatives. A quantum‐mechanical study of all classical isomers of C58, C60, and C62, and all non‐classical isomers with at most one square or heptagonal face, was carried out. Calculations at the B3LYP/6‐31G* level show that the favored isomers of C58, C60, and C62 have closely related structures and suggest plausible inter‐conversion and growth pathways among low‐energy isomers. Similarity of the favored structures is reinforced by comparison of calculated ring currents induced on faces of these polyhedral cages by radial external magnetic fields, implying patterns of magnetic response similar to those of the stable, isolated‐pentagon C60 molecule. © 2016 Wiley Periodicals, Inc.

[1]  Yang Wang,et al.  Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes. , 2016, Journal of the American Chemical Society.

[2]  Patrick W. Fowler,et al.  Increasing cost of pentagon adjacency for larger fullerenes , 1996 .

[3]  L. Gan,et al.  A global search for the lowest energy isomer of C(26). , 2010, The Journal of chemical physics.

[4]  Roberto Zanasi,et al.  Magnetic properties of C60 calculated by continuous transformation of the origin of the current density , 1997 .

[5]  Wendy Myrvold,et al.  Distributed curvature and stability of fullerenes. , 2015, Physical chemistry chemical physics : PCCP.

[6]  P. Fowler,et al.  Face-spiral codes in cubic polyhedral graphs with face sizes no larger than 6 , 2012, Journal of Mathematical Chemistry.

[7]  P. Fowler,et al.  A fullerene without a spiral , 1993 .

[8]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[9]  P. Fowler,et al.  C62: Theoretical Evidence for a Nonclassical Fullerene with a Heptagonal Ring , 1996 .

[10]  G. Brinkmann,et al.  CaGe - a Virtual Environment for Studying Some Special Classes of Plane Graphs - an Update , 2010 .

[11]  Mikael P. Johansson,et al.  Sphere currents of Buckminsterfullerene. , 2005, Angewandte Chemie.

[12]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[13]  C. Reed,et al.  Fullerene-porphyrin constructs. , 2005, Accounts of chemical research.

[14]  Manuel Alcamí,et al.  Is C50 a superaromat? Evidence from electronic structure and ring current calculations. , 2016, Physical chemistry chemical physics : PCCP.

[15]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[16]  J. Tuček,et al.  Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. , 2015, Chemical reviews.

[17]  P. Fowler,et al.  Energetics of Fullerenes with Octagonal Rings , 1997 .

[18]  Alessandro Soncini,et al.  Visualising aromaticity of bowl-shaped molecules. , 2011, Physical chemistry chemical physics : PCCP.

[19]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[20]  B. McKay,et al.  The smallest fullerene without a spiral , 2012 .

[21]  Patrick W. Fowler,et al.  Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes , 2016, J. Comput. Chem..

[22]  Wendy Myrvold,et al.  The "anthracene problem": closed-form conjugated-circuit models of ring currents in linear polyacenes. , 2011, The journal of physical chemistry. A.

[23]  R. C. Haddon,et al.  Comment on the Relationship of the Pyramidalization Angle at a Conjugated Carbon Atom to the σ Bond Angles , 2001 .

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  Erich Steiner,et al.  Pseudo-π currents: rapid and accurate visualisation of ring currents in conjugated hydrocarbons , 2002 .

[26]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[27]  Patrick W. Fowler,et al.  Pentagon adjacency as a determinant of fullerene stability , 1999 .

[28]  Jun Li,et al.  Carbon arc production of heptagon-containing fullerene[68] , 2011, Nature communications.

[29]  J. Aihara,et al.  Weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes , 1999 .

[30]  Massimo Malagoli,et al.  On CHF calculations of second-order magnetic properties using the method of continuous transformation of origin of the current density , 1994 .

[31]  R. C. Haddon,et al.  Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility , 1987, Nature.

[32]  Pablo Ordejón,et al.  Fullerene growth and the role of nonclassical isomers , 2001 .

[33]  Patrick W. Fowler,et al.  Efficient mapping of ring currents in fullerenes and other curved carbon networks , 2006 .

[34]  Manuel Alcamí,et al.  Structure and electronic properties of fullerenes C(52)q+: is C(52)2+ an exception to the pentagon adjacency penalty rule? , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Acronyms A. C. R. , 2012 .

[36]  Ji-Kang Feng,et al.  Structures, stabilities, and electronic and optical properties of C62 fullerene isomers. , 2007, The journal of physical chemistry. A.

[37]  Li-Hua Gan,et al.  Nonclassical fullerenes with a heptagon violating the pentagon adjacency penalty rule , 2010, J. Comput. Chem..

[38]  J. Aihara,et al.  Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons , 1999 .

[39]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[40]  Nan Shao,et al.  Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24. , 2008, The Journal of chemical physics.

[41]  Alfredo Pasquarello,et al.  Ring Currents in Icosahedral C60 , 1992, Science.

[42]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[43]  L. Gan,et al.  Theoretical investigation of polyhedral hydrocarbons (CH)n , 2006 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Patrick W. Fowler,et al.  Competition between Even and Odd Fullerenes: C118, C119, and C120 , 2000 .

[46]  R. Mallion,et al.  Aromaticity and ring currents. , 2001, Chemical reviews.

[47]  B. M. Fulk MATH , 1992 .