Biharmonic Problem in a Rectangle
暂无分享,去创建一个
[1] E. Mathieu. Théorie de l'élasticité des corps solides , 1890 .
[2] William Thomson Baron Kelvin,et al. Treatise on Natural Philosophy , 1867 .
[3] James Clerk Maxwell,et al. The Scientific Letters and Papers of James Clerk Maxwell: Volume 1, 1846-1862 , 1990 .
[4] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[5] J. Goodier. XLVI. An analogy between the slow motions of a viscous fluid in two dimensions, and systems of plane stress , 1934 .
[6] F. A. Gaydon. The rectangle, under general equilibrium loading, in generalized plane stress , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[7] J. Sherwood,et al. Streamline patterns and eddies in low-Reynolds-number flow , 1980, Journal of Fluid Mechanics.
[8] Ivor Grattan-Guinness,et al. Joseph Fourier, 1768-1830 , 1973 .
[9] N. Muskhelishvili. Some basic problems of the mathematical theory of elasticity : fundamental equations, plane theory of elasticity, torsion, and bending , 1953 .
[10] L. L. Bucciarelli,et al. Sophie Germain: An Essay in the History of the Theory of Elasticity , 1980 .
[11] A. Love. Biharmonic Analysis, Especially in a Rectangle, and its Applications to the Theory of Elasticity , 1928 .
[12] C. Wilson. The Influence of Surface-Loading on the Flexure of Beams , 1890 .
[13] H. Hencky. Der Spannungszustand in rechteckigen Platten , 1913 .
[14] R. Sec.. XXXVIII. On the flow of viscous liquids, especially in two dimensions , 1893 .
[15] A. Clebsch,et al. Théorie de l'élasticité des corps solides , 1883 .
[16] Ivor Grattan-Guinness,et al. Joseph Fourier, 1768-1830; a survey of his life and work, based on a critical edition of his monograph on the propagation of heat, presented to the Institut de France in 1807 , 1972 .
[17] O. Sano,et al. Stokeslets and Eddies in Creeping Flow , 1980 .
[18] O. Tedone,et al. Spezielle Ausführungen zur Statik Elastischer Körper , 1907 .
[19] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .
[20] A. Timpe. Probleme der Spannungsverteilung in ebenen Systemen : einfach gelöst mit Hilfe der airyschen Funktion , 1905 .
[21] J. Fadle. Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe , 1940 .
[22] V. Meleshko. Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited , 1995 .
[23] R. D. Gregory. The semi-infinite strip x≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed , 1980 .
[24] V. Meleshko,et al. Infinite systems for a biharmonic problem in a rectangle , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] H. K. Moffatt. Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.
[26] J. Dougall. VIII.—An Analytical Theory of the Equilibrium of an Isotropic Elastic Plate , 1906, Transactions of the Royal Society of Edinburgh.
[27] Frederic Y. M. Wan,et al. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory , 1984 .
[28] V. Meleshko. Steady Stokes flow in a rectangular cavity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] W. R. Dean,et al. On the steady motion of viscous liquid in a corner , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] S. Timoshenko,et al. As I remember , 1968 .
[31] V. Meleshko. Bending of an Elastic Rectangular Clamped Plate: Exact Versus ‘Engineering’ Solutions , 1997 .
[32] D. Spence. A Class of Biharmonic End-strip Problems Arising in Elasticity and Stokes Flow , 1983 .
[33] L. Rayleigh. XXIII. Hydrodynamical notes , 1911 .
[34] G. B. Jeffery,et al. Plane Stress and Plane Strain in Bipolar Co-Ordinates , 1921 .
[35] M. De. Handbuch der Physik , 1957 .
[36] Louis Napoleon George Filon,et al. On an Approximate Solution for the Bending of a Beam of Rectangular Cross-Section under any System of Load, with Special Reference to Points of Concentrated or Discontinuous Loading , 1903 .
[37] R. D. Carmichael. Review: Frédéric Riesz, Les Systèmes d'Équations linéaires a une Infinité d'Inconnues , 1914 .
[38] Giuseppe Lauricella,et al. Sur l'intégration de l'équation relative à l'équilibre des plaques élastiques encastrées , 1909 .
[39] I. S. Sokolnikoff. Mathematical theory of elasticity , 1946 .
[40] George Biddell Airy,et al. IV. On the strains in the Interior of beams , 1863, Philosophical Transactions of the Royal Society of London.
[41] P. N. Shankar,et al. The eddy structure in Stokes flow in a cavity , 1993, Journal of Fluid Mechanics.
[42] A. Love,et al. The Mathematical Theory of Elasticity. , 1928 .
[43] W. H. Warner,et al. Convergence of biorthogonal series of biharmonic eigenfunctions by the method of titchmarsh , 1982 .
[44] F. Riesz,et al. Les systèmes d'équations linéaires : a une infinité d'inconnues , 1952 .
[45] G. Lamé. Leçons sur les coordonnées curvilignes et leurs diverses applications , 1859 .
[46] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[47] J. Maxwell,et al. On Reciprocal Diagrams in Space, and their relation to Airy's Function of Stress , 1866 .
[48] N. Muskhelishvili. Some basic problems of the mathematical theory of elasticity , 1953 .
[49] C. A. Carus Wilson,et al. LX. The influence of surface-loading on the flexure of beams , 1891 .
[50] Arpád Nádai. Die elastischen Platten , 1925 .
[51] G. G. Peters,et al. Steady Stokes flow in an annular cavity , 1996 .
[52] S. Mikhlin,et al. Variational Methods in Mathematical Physics , 1965 .
[53] D. Joseph,et al. The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems: Part II , 1977 .
[54] J. Happel,et al. Low Reynolds number hydrodynamics , 1965 .
[55] M. E. O'neill,et al. The separation of Stokes flows , 1977, Journal of Fluid Mechanics.