Biharmonic Problem in a Rectangle

This paper addresses the fascinating long history of the classical two-dimensional biharmonic problem for a rectangular domain. Among various mathematical and engineering approaches, the method of superposition is effective for solving mechanical problems concerning creeping flow of viscous fluid set up in a rectangular cavity by tangential velocities applied along its walls, an equilibrium of an elastic rectangle, and bending of a clamped thin rectangular elastic plate by a normal load. The object of this paper is both to clarify some purely mathematical questions connected with the solution of the infinite systems of linear algebraic equations and to provide a considerable simplification of the numerical algorithm. The method is illustrated by several examples of steady Stokes flow in a square cavity.

[1]  E. Mathieu Théorie de l'élasticité des corps solides , 1890 .

[2]  William Thomson Baron Kelvin,et al.  Treatise on Natural Philosophy , 1867 .

[3]  James Clerk Maxwell,et al.  The Scientific Letters and Papers of James Clerk Maxwell: Volume 1, 1846-1862 , 1990 .

[4]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[5]  J. Goodier XLVI. An analogy between the slow motions of a viscous fluid in two dimensions, and systems of plane stress , 1934 .

[6]  F. A. Gaydon The rectangle, under general equilibrium loading, in generalized plane stress , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  J. Sherwood,et al.  Streamline patterns and eddies in low-Reynolds-number flow , 1980, Journal of Fluid Mechanics.

[8]  Ivor Grattan-Guinness,et al.  Joseph Fourier, 1768-1830 , 1973 .

[9]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity : fundamental equations, plane theory of elasticity, torsion, and bending , 1953 .

[10]  L. L. Bucciarelli,et al.  Sophie Germain: An Essay in the History of the Theory of Elasticity , 1980 .

[11]  A. Love Biharmonic Analysis, Especially in a Rectangle, and its Applications to the Theory of Elasticity , 1928 .

[12]  C. Wilson The Influence of Surface-Loading on the Flexure of Beams , 1890 .

[13]  H. Hencky Der Spannungszustand in rechteckigen Platten , 1913 .

[14]  R. Sec. XXXVIII. On the flow of viscous liquids, especially in two dimensions , 1893 .

[15]  A. Clebsch,et al.  Théorie de l'élasticité des corps solides , 1883 .

[16]  Ivor Grattan-Guinness,et al.  Joseph Fourier, 1768-1830; a survey of his life and work, based on a critical edition of his monograph on the propagation of heat, presented to the Institut de France in 1807 , 1972 .

[17]  O. Sano,et al.  Stokeslets and Eddies in Creeping Flow , 1980 .

[18]  O. Tedone,et al.  Spezielle Ausführungen zur Statik Elastischer Körper , 1907 .

[19]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[20]  A. Timpe Probleme der Spannungsverteilung in ebenen Systemen : einfach gelöst mit Hilfe der airyschen Funktion , 1905 .

[21]  J. Fadle Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe , 1940 .

[22]  V. Meleshko Equilibrium of elastic rectangle: Mathieu-Inglis-Pickett solution revisited , 1995 .

[23]  R. D. Gregory The semi-infinite strip x≥0, −1≤y≤1; completeness of the Papkovich-Fadle eigenfunctions when Φxx(0,y), Φyy(0,y) are prescribed , 1980 .

[24]  V. Meleshko,et al.  Infinite systems for a biharmonic problem in a rectangle , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[26]  J. Dougall VIII.—An Analytical Theory of the Equilibrium of an Isotropic Elastic Plate , 1906, Transactions of the Royal Society of Edinburgh.

[27]  Frederic Y. M. Wan,et al.  Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory , 1984 .

[28]  V. Meleshko Steady Stokes flow in a rectangular cavity , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  W. R. Dean,et al.  On the steady motion of viscous liquid in a corner , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  S. Timoshenko,et al.  As I remember , 1968 .

[31]  V. Meleshko Bending of an Elastic Rectangular Clamped Plate: Exact Versus ‘Engineering’ Solutions , 1997 .

[32]  D. Spence A Class of Biharmonic End-strip Problems Arising in Elasticity and Stokes Flow , 1983 .

[33]  L. Rayleigh XXIII. Hydrodynamical notes , 1911 .

[34]  G. B. Jeffery,et al.  Plane Stress and Plane Strain in Bipolar Co-Ordinates , 1921 .

[35]  M. De Handbuch der Physik , 1957 .

[36]  Louis Napoleon George Filon,et al.  On an Approximate Solution for the Bending of a Beam of Rectangular Cross-Section under any System of Load, with Special Reference to Points of Concentrated or Discontinuous Loading , 1903 .

[37]  R. D. Carmichael Review: Frédéric Riesz, Les Systèmes d'Équations linéaires a une Infinité d'Inconnues , 1914 .

[38]  Giuseppe Lauricella,et al.  Sur l'intégration de l'équation relative à l'équilibre des plaques élastiques encastrées , 1909 .

[39]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[40]  George Biddell Airy,et al.  IV. On the strains in the Interior of beams , 1863, Philosophical Transactions of the Royal Society of London.

[41]  P. N. Shankar,et al.  The eddy structure in Stokes flow in a cavity , 1993, Journal of Fluid Mechanics.

[42]  A. Love,et al.  The Mathematical Theory of Elasticity. , 1928 .

[43]  W. H. Warner,et al.  Convergence of biorthogonal series of biharmonic eigenfunctions by the method of titchmarsh , 1982 .

[44]  F. Riesz,et al.  Les systèmes d'équations linéaires : a une infinité d'inconnues , 1952 .

[45]  G. Lamé Leçons sur les coordonnées curvilignes et leurs diverses applications , 1859 .

[46]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[47]  J. Maxwell,et al.  On Reciprocal Diagrams in Space, and their relation to Airy's Function of Stress , 1866 .

[48]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[49]  C. A. Carus Wilson,et al.  LX. The influence of surface-loading on the flexure of beams , 1891 .

[50]  Arpád Nádai Die elastischen Platten , 1925 .

[51]  G. G. Peters,et al.  Steady Stokes flow in an annular cavity , 1996 .

[52]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[53]  D. Joseph,et al.  The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems: Part II , 1977 .

[54]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[55]  M. E. O'neill,et al.  The separation of Stokes flows , 1977, Journal of Fluid Mechanics.