An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials

Based on two‐component relativistic atomic calculations, a free electron density function (EDF) library has been developed for nearly all the known ECPs of the elements Li (Z = 3) up to Ubn (Z = 120), which can be interfaced into modern quantum chemistry programs to save the .wfx wavefunction file. The applicability of this EDF library is demonstrated by the analyses of the quantum theory of atoms in molecules (QTAIM) and other real space functions on HeCuF, PtO42+ , OgF4, and TlCl3(DMSO)2. When a large‐core ECP is used, it shows that the corrections by EDF may significantly improve the properties of some density‐derived real space functions, but they are invalid for the wavefunction‐depending real space functions. To classify different chemical bonds and especially some nonclassical interactions, a list of universal criteria has also been proposed. © 2018 Wiley Periodicals, Inc.

[1]  Adam I. Stash,et al.  Determination of the electron localization function from electron density , 2002 .

[2]  E. Murashova,et al.  Thallium(III) chloride in organic solvents: Synthesis, solutions and solvates. The crystal structures of trichlorobis(dimethylsulfoxide)thallium(III) and tribromobis(dimethylsulfoxide)thallium(III) , 2009 .

[3]  P. Fuentealba,et al.  On the reliability of semi-empirical pseudopotentials: simulation of Hartree-Fock and Dirac-Fock results , 1983 .

[4]  T. Keith,et al.  Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions. , 2011, The journal of physical chemistry. A.

[5]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[6]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg , 2004 .

[7]  Thomas A. Manz,et al.  Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology , 2016 .

[8]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[9]  Michael Dolg,et al.  Energy-adjusted pseudopotentials for the rare earth elements , 1989 .

[10]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[11]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[12]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[13]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[14]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[15]  Gert Vriend,et al.  Molden 2.0: quantum chemistry meets proteins , 2017, Journal of Computer-Aided Molecular Design.

[16]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[17]  Paul L. A. Popelier,et al.  Theoretical Definition of a Functional Group and the Molecular Orbital Paradigm , 1994 .

[18]  E. Glendening,et al.  Natural resonance theory: II. Natural bond order and valency , 1998 .

[19]  J. E. Boggs,et al.  Theoretical study of RgMF (Rg = He, Ne; M = Cu, Ag, Au): Bonded structures of helium , 2009 .

[20]  Frank Weinhold,et al.  Natural resonance theory: III. Chemical applications , 1998 .

[21]  P. Hiberty,et al.  Charge-shift bonding and its manifestations in chemistry. , 2009, Nature chemistry.

[22]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[23]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[24]  D. Cremer,et al.  Analytical energy gradient for the two-component normalized elimination of the small component method. , 2015, The Journal of chemical physics.

[25]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[26]  K. Pitzer Fluorides of radon and element 118 , 1975 .

[27]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[28]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[29]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[30]  Hans-Christian Hege,et al.  ORBKIT: A modular python toolbox for cross‐platform postprocessing of quantum chemical wavefunction data , 2016, J. Comput. Chem..

[31]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[32]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[33]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[34]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[35]  F. E. Jorge,et al.  Accurate universal Gaussian basis set for all atoms of the Periodic Table , 1998 .

[36]  G. Soff,et al.  The lamb shift in hydrogen-like atoms, 1 ⩽ Z ⩽ 110 , 1985 .

[37]  Michael Dolg,et al.  Ab initio pseudopotentials for Hg through Rn , 1991 .

[38]  A. Otero-de-la-Roza,et al.  Critic2: A program for real-space analysis of quantum chemical interactions in solids , 2014, Comput. Phys. Commun..

[39]  M. Hoffmann,et al.  Relativistic GVVPT2 multireference perturbation theory description of the electronic states of Y2 and Tc2. , 2014, The journal of physical chemistry. A.

[40]  Sason Shaik,et al.  Charge-shift bonding--a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. , 2005, Chemistry.

[41]  Haoyu S. Yu,et al.  Oxidation State 10 Exists. , 2016, Angewandte Chemie.

[42]  Shuai Jiang,et al.  On the properties of Au2P3z (z = −1, 0, +1): analysis of geometry, interaction, and electron density , 2015 .

[43]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[44]  S. Hayashi,et al.  Polar coordinate representation of Hb(rc) versus (h2/8m)nabla2rhob(rc) at BCP in AIM analysis: classification and evaluation of weak to strong interactions. , 2009, The journal of physical chemistry. A.

[45]  P. Schwerdtfeger,et al.  Accurate relativistic energy-consistent pseudopotentials for the superheavy elements 111 to 118 including quantum electrodynamic effects. , 2012, The Journal of chemical physics.

[46]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[47]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 7p elements, with atomic and molecular applications , 2012, Theoretical Chemistry Accounts.

[48]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[49]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[50]  K. Dyall,et al.  Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu , 2007 .

[51]  Chen Feiwu,et al.  Meaning and Functional Form of the Electron Localization Function , 2011 .

[52]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[53]  Wenjian Liu,et al.  On the spin separation of algebraic two-component relativistic Hamiltonians. , 2012, The Journal of chemical physics.

[54]  K. Wade,et al.  The chemistry of aluminium, gallium, indium and thallium , 1975 .

[55]  R. Bader Atoms in molecules , 1990 .

[56]  G. Frenking,et al.  Topological analysis of electron density distribution taken from a pseudopotential calculation , 1997, J. Comput. Chem..

[57]  Frank Neese,et al.  All-electron scalar relativistic basis sets for the 6p elements , 2012, Theoretical Chemistry Accounts.

[58]  Axel D. Becke,et al.  Chemical content of the kinetic energy density , 2000 .

[59]  Wenjian Liu,et al.  On the spin separation of algebraic two-component relativistic Hamiltonians: molecular properties. , 2014, The Journal of chemical physics.

[60]  David Feller The role of databases in support of computational chemistry calculations , 1996 .

[61]  F. E. Jorge,et al.  Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. , 2009, The Journal of chemical physics.

[62]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[64]  M. Dolg,et al.  Accuracy of relativistic energy-consistent pseudopotentials for superheavy elements 111-118: molecular calibration calculations. , 2013, The Journal of chemical physics.

[65]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[66]  Y. Ishikawa,et al.  Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119) , 2001 .

[67]  B. Bursten,et al.  Spin-Orbit Effects, VSEPR Theory, and the Electronic Structures of Heavy and Superheavy Group IVA Hydrides and Group VIIIA Tetrafluorides. A Partial Role Reversal for Elements 114 and 118. , 1999, The journal of physical chemistry. A.

[68]  Wenli Zou,et al.  Correction to "On the Covalent Character of Rare Gas Bonding Interactions: A New Kind of Weak Interaction". , 2016, The journal of physical chemistry. A.

[69]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[70]  Yoon Sup Lee,et al.  Structures of RgFn (Rg = Xe, Rn, and Element 118. n = 2, 4.) Calculated by Two-component Spin−Orbit Methods. A Spin−Orbit Induced Isomer of (118)F4 , 1999 .

[71]  J. Cioslowski,et al.  Properties of atoms in molecules from valence-electron densities augmented with core-electron contributions , 1996 .

[72]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. , 2009, The journal of physical chemistry. A.

[73]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[74]  W. C. Ermler,et al.  Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118 , 1997 .

[75]  Juan Manuel Solano-Altamirano,et al.  DensToolKit: A comprehensive open-source package for analyzing the electron density and its derivative scalar and vector fields , 2015, Comput. Phys. Commun..

[76]  J. Cioslowski,et al.  Accurate analytical representations of the core-electron densities of the elements 3 through 118 , 1997 .

[77]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[78]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[79]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[80]  Ishikawa,et al.  Universal Gaussian basis set for accurate ab initio /P relat ivistic Dirac-Fock calculations. , 1993, Physical review. A, Atomic, molecular, and optical physics.