A note on scalar meson dominance

We consider chiral perturbation theory with an explicit broad σ-meson and study its contribution to the scalar form factors of the pion and the nucleon. Our goal is to learn more about resonance saturation in the scalar sector.

[1]  C. Hanhart,et al.  A new parametrization for the scalar pion form factors , 2018, The European Physical Journal C.

[2]  J. Peláez,et al.  From controversy to precision on the sigma meson: a review on the status of the non-ordinary $f_0(500)$ resonance , 2015, 1510.00653.

[3]  M. Hoferichter,et al.  Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory. , 2015, Physical review letters.

[4]  Lewis C. Tunstall,et al.  Δ I = 1 / 2 rule for kaon decays derived from QCD infrared fixed point , 2013, 1312.3319.

[5]  I. Caprini,et al.  Mass and width of the lowest resonance in QCD. , 2005, Physical review letters.

[6]  N. Kaiser Spectral functions of isoscalar scalar and isovector electromagnetic form-factors of the nucleon at two loop order , 2003, nucl-th/0302072.

[7]  U. Meißner,et al.  Rescattering and chiral dynamics in B ! decay , 2001, hep-ph/0112281.

[8]  A. Deandrea,et al.  B --> rhopi decays, resonant and nonresonant contributions. , 2000, Physical review letters.

[9]  V. Bernard,et al.  Aspects of chiral pion - nucleon physics , 1996, hep-ph/9611253.

[10]  J. Gasser,et al.  Chiral expansion of pion form factors beyond one loop , 1991 .

[11]  H. Leutwyler,et al.  The decay of a light Higgs boson , 1990 .

[12]  A. Pich,et al.  The Role of Resonances in Chiral Perturbation Theory , 1989 .

[13]  Valencia,et al.  Spectrum of QCD and chiral Lagrangians of the strong and weak interactions. , 1989, Physical review. D, Particles and fields.

[14]  M. E. Sainio,et al.  Nucleons with Chiral Loops , 1988 .

[15]  U. Meissner Chiral dynamics: Where are the scalars? , 1990 .

[16]  C. Isham,et al.  BROKEN CHIRAL AND CONFORMAL SYMMETRY IN AN EFFECTIVE-LAGRANGIAN FORMALISM. , 1970 .