Analysis of transfer procedures in elastoplasticity based on the error in the constitutive equations: Theory and numerical illustration

The aim of this work is to illustrate a methodology for the assessment of adaptive strategies for the solution of associative rate-independent plasticity problems solved by employing the incremental displacement conforming finite element method. This is the first step towards a more rational definition of transfer operators in terms of the ensuing error. The motivating idea is the observation that change of data and/or finite element mesh from one time interval to the other can be both related to a discontinuity jump of the approximate solution across the time instant t n . Thus, reliable a posteriori estimates will have to depend not only on the time step and finite element mesh size but also on the value of the jump. A new error estimate based on the error in the constitutive equations is developed which allows characterization of the discontinuity jump.

[1]  Gérard Coffignal Optimisation et fiabilité des calculs éléments finis en élastoplasticité , 1987 .

[2]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[3]  Ricardo H. Nochetto,et al.  Error Control and Andaptivity for a Phase Relaxation Model , 2000 .

[4]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[5]  M. M. Rashid,et al.  Material state remapping in computational solid mechanics , 2002 .

[6]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[7]  Nicolas Moës,et al.  Constitutive relation error estimators for (visco)plastic finite element analysis with softening , 1999 .

[8]  R. Wong Elementary Theory of Distributions , 1989 .

[9]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[10]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[11]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[12]  Rolf Rannacher,et al.  A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .

[13]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[14]  E. Stein,et al.  Error indicators and mesh refinements for finite-element-computations of elastoplastic deformations , 1998 .

[15]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem , 2000 .

[16]  Carsten Carstensen,et al.  Numerical Analysis of Time-Depending PrimalElastoplasticity with Hardening , 2000, SIAM J. Numer. Anal..

[17]  Nils-Erik Wiberg,et al.  Adaptive finite element procedures for linear and non‐linear dynamics , 1999 .

[18]  Sergey Repin,et al.  A posteriori error estimation for elasto-plastic problems based on duality theory☆ , 1996 .

[19]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[20]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[21]  J. Kestin,et al.  Irreversible Processes and Physical Interpretation of Rational Thermodynamics , 1979 .

[22]  J. Z. Zhu,et al.  The finite element method , 1977 .

[23]  P. Ladeveze,et al.  La méthode à grand incrément de temps pour l'analyse de structures à comportement non linéaire décrit par variables internes , 1989 .

[24]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[25]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[26]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[27]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[28]  Antonio Orlando,et al.  Analysis of adaptive finite element solutions in elastoplasticity, with reference to transfer operation techniques , 2002 .

[29]  Nicolas Moës,et al.  A new a posteriori error estimation for nonlinear time-dependent finite element analysis , 1998 .

[30]  Rolf Rannacher,et al.  A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity , 1999 .

[31]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[32]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[33]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[34]  D. Peric,et al.  A STUDY ON A POSTERIORI ERROR ESTIMATION FOR ELASTOPLASTIC SOLIDS , 2000 .

[35]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[36]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[37]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in flow formulation for forming problems , 1988 .

[38]  P. Ladevèze,et al.  Sur une famille d'algorithmes en mécanique des structures , 1985 .

[39]  David R. Owen,et al.  On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and Cosserat continua , 1994 .

[40]  Jan Mikusiński,et al.  The Elementary Theory Of Distributions , 1957 .