Multi-objective optimization of seeded batch crystallization processes

The optimization of a batch cooling crystallizer has been traditionally sought with respect to the cooling profile and seeding characteristics that keep supersaturation at an optimum level throughout the operation. Crystallization processes typically have multiple performance objectives and optimization using different objective functions leads to significantly different optimal operating conditions. Thus different temperature profiles and seeding characteristics impose a complex interplay on the crystallizer behavior and there is a trade-off between the performance objectives. Therefore, a multi-objective approach should be adopted for optimization of a batch crystallizer for best process operation. This study presents the solution of various optimal control problems for a seeded batch crystallizer within a multi-objective framework. A well known multi-objective evolutionary algorithm, the elitist Nondominated Sorting Genetic Algorithm, has been adapted here to illustrate the potential for the multi-objective optimization approach.

[1]  H. Hojjati,et al.  Cooling and seeding effect on supersaturation and final crystal size distribution (CSD) of ammonium sulphate in a batch crystallizer , 2005 .

[2]  M. B. Ajinkya,et al.  ON THE OPTIMAL OPERATION OF CRYSTALLIZATION PROCESSES , 1974 .

[3]  Rahul B. Kasat,et al.  Multiobjective Optimization of Industrial FCC Units Using Elitist Nondominated Sorting Genetic Algorithm , 2002 .

[4]  Kishalay Mitra,et al.  Towards a better understanding of the epoxy-polymerization process using multi-objective evolutionary computation , 2004 .

[5]  D. L. Ma,et al.  Optimal control and simulation of multidimensional crystallization processes , 2002 .

[6]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[7]  D. Sarkar,et al.  Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. , 2005 .

[8]  Ajay K. Ray,et al.  APPLICATIONS OF MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL ENGINEERING , 2000 .

[9]  A. Myerson Handbook of Industrial Crystallization , 2002 .

[10]  Q. Hu,et al.  Modelling and optimization of seeded batch crystallizers , 2005, Comput. Chem. Eng..

[11]  Nabil Abdel-Jabbar,et al.  Model-based optimal cooling strategy for batch crystallization processes , 2003 .

[12]  Panagiotis D. Christofides,et al.  Predictive control of particle size distribution in particulate processes , 2006 .

[13]  Douglas M. Ruthven,et al.  A simple model for a non‐isothermal adsorption column , 1990 .

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  N. Kubota,et al.  LARGE AND MONO-SIZED PRODUCT CRYSTALS FROM NATURAL COOLING MODE BATCH CRYSTALLIZER , 1996 .

[16]  Weifang Yu,et al.  Optimization of reactive simulated moving bed and Varicol systems for hydrolysis of methyl acetate , 2005 .

[17]  K. Berglund,et al.  ATR-FTIR for Determining Optimal Cooling Curves for Batch Crystallization of Succinic Acid , 2002 .

[18]  F. Puel,et al.  Improving batch cooling seeded crystallization of an organic weed-killer using on-line ATR FTIR measurement of supersaturation , 2001 .

[19]  Min-Sen Chiu,et al.  An Effective Technique for Batch Process Optimization with Application to Crystallization , 2000 .

[20]  Evaristo Chalbaud Biscaia,et al.  Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors , 2003, Comput. Chem. Eng..

[21]  Francis J. Doyle,et al.  Hierarchical multiobjective strategy for particle‐size distribution control , 2003 .

[22]  L. Biegler,et al.  Dynamic optimization of a batch cooling crystallization process , 1999 .

[23]  Arthur Jutan,et al.  Optimal control of a batch cooling seeded crystallizer , 2005 .

[24]  Caliane Bastos Borba Costa,et al.  Evaluation of optimisation techniques and control variable formulations for a batch cooling crystallization process , 2005 .

[25]  Debasis Sarkar,et al.  Optimal design of multiproduct batch chemical plant using NSGA-II , 2006 .

[26]  James B. Rawlings,et al.  Model identification and control strategies for batch cooling crystallizers , 1994 .

[27]  D. L. Ma,et al.  Optimal seeding in batch crystallization , 1999 .

[28]  A. K. Ray,et al.  Multiobjective optimization of SMB and varicol process for chiral separation , 2002 .

[29]  Robin Smith,et al.  Novel Strategies for Optimization of Batch, Semi-batch and Heating/Cooling Evaporative Crystallization , 2004 .

[30]  Alan Jones,et al.  Optimal operation of a batch cooling crystallizer , 1974 .

[31]  Sohrab Rohani,et al.  A simplified approach to the operation of a batch crystallizer , 1990 .

[32]  J. B. Rawlings,et al.  9 – Control of crystallization processes , 2002 .

[33]  Noriaki Kubota,et al.  Seeding policy in batch cooling crystallization , 2001 .

[34]  Jörg Raisch,et al.  Control of batch cooling crystallization processes based on orbital flatness , 2003 .

[35]  Robin Smith,et al.  Optimization of batch cooling crystallization , 2004 .

[36]  Arthur Jutan,et al.  New numerical method for solving the dynamic population balance equations , 2005 .

[37]  J. Rawlings,et al.  Model identification and control of solution crystallization processes: a review , 1993 .

[38]  Sohrab Rohani,et al.  On-line optimal control of a seeded batch cooling crystallizer , 2003 .

[39]  Caliane B.B. Costa,et al.  Factorial design technique applied to genetic algorithm parameters in a batch cooling crystallization optimisation , 2005, Comput. Chem. Eng..