Counting s(3+1)-avoiding permutations

A poset is (3+1)-free if it contains no induced subposet isomorphic to the disjoint union of a 3-element chain and a 1-element chain. These posets are of interest because of their connection with interval orders and their appearance in the (3+1)-free Conjecture of Stanley and Stembridge. The dimension 2 posets P are exactly the ones which have an associated permutation @p where [email protected]?j in P if and only if i

[1]  Mark Skandera A Characterization of (3+1)-Free Posets , 2001, J. Comb. Theory, Ser. A.

[2]  Mike D. Atkinson,et al.  Simple permutations and pattern restricted permutations , 2005, Discret. Math..

[3]  M. Zabrocki,et al.  On the Stanley-Wilf limit of 4231-avoiding permutations and a conjecture of Arratia , 2006, Adv. Appl. Math..

[4]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[5]  Ian Le Wilf Classes of Pairs of Permutations of Length 4 , 2005, Electron. J. Comb..

[6]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[7]  M. Bona A simple proof for the exponential upper bound for some tenacious patterns , 2004, Adv. Appl. Math..

[8]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[9]  Jaejin Lee,et al.  An algorithmic sign-reversing involution for special rim-hook tableaux , 2006, J. Algorithms.

[10]  Wai Chee Shiu,et al.  Finite transition matrices for permutations avoiding pairs of length four patterns , 2003, Discret. Math..

[11]  Miklós Bóna,et al.  The Permutation Classes Equinumerous to the Smooth Class , 1998, Electron. J. Comb..

[12]  Richard P. Stanley,et al.  On Immanants of Jacobi-Trudi Matrices and Permutations with Restricted Position , 1993, J. Comb. Theory, Ser. A.

[13]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[14]  Vesselin Gasharov,et al.  Incomparability graphs of (3 + 1)-free posets are s-positive , 1996, Discret. Math..

[15]  Darla Kremer Postscript: "Permutations with forbidden subsequences and a generalized Schro"der number" [Discrete Mathematics 218 (2000) 121-130] , 2003, Discret. Math..

[16]  Bruce E. Sagan,et al.  A Chromatic Symmetric Function in Noncommuting Variables , 2001 .