Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting

[1]  D. Loew,et al.  Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane , 2017, Nature Communications.

[2]  S. Vassilopoulos,et al.  Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration , 2017, Science.

[3]  S. Marullo,et al.  Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β2-adrenoceptor clusters assembled by alpha-actinin-4 , 2017, Nature Communications.

[4]  Atsushi Matsuda,et al.  Strategic and practical guidelines for successful structured illumination microscopy , 2017, Nature Protocols.

[5]  V. Studer,et al.  How cells respond to environmental cues – insights from bio-functionalized substrates , 2017, Journal of Cell Science.

[6]  J. Olivo-Marin,et al.  Tunneling nanotubes spread fibrillar α‐synuclein by intercellular trafficking of lysosomes , 2016, The EMBO journal.

[7]  E. Egelman,et al.  Structure of the Neisseria meningitidis Type IV pilus , 2016, Nature Communications.

[8]  S. Grinstein,et al.  The life cycle of phagosomes: formation, maturation, and resolution , 2016, Immunological reviews.

[9]  E. Lemichez,et al.  Microbial pathogenesis meets biomechanics. , 2016, Current opinion in cell biology.

[10]  Ian M. Dobbie,et al.  SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy , 2015, Scientific Reports.

[11]  Pierre Sens,et al.  Membrane tension and cytoskeleton organization in cell motility , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  C. Zurzolo,et al.  Prion aggregates transfer through tunneling nanotubes in endocytic vesicles , 2015, Prion.

[13]  P. Bassereau,et al.  Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons. , 2015, Biophysical journal.

[14]  William Lehman,et al.  Structure of the F-actin–tropomyosin complex , 2014, Nature.

[15]  A. Beaussart,et al.  Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili , 2014, ACS nano.

[16]  G. Duménil,et al.  The number of Neisseria meningitidis type IV pili determines host cell interaction , 2014, The EMBO journal.

[17]  Alexander J. Probst,et al.  Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm , 2014, Front. Microbiol..

[18]  J. Olivo-Marin,et al.  Early sequence of events triggered by the interaction of Neisseria meningitidis with endothelial cells , 2014, Cellular microbiology.

[19]  X. Nassif,et al.  Meningococcal interaction to microvasculature triggers the tissular lesions of purpura fulminans. , 2013, The Journal of infectious diseases.

[20]  R. Lamb,et al.  Viral membrane scission. , 2013, Annual review of cell and developmental biology.

[21]  A. Danckaert,et al.  Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes , 2013, Journal of Cell Science.

[22]  André Schröder,et al.  Gel-assisted formation of giant unilamellar vesicles. , 2013, Biophysical journal.

[23]  C. Tribet,et al.  Triggering Cell Adhesion, Migration or Shape Change with a Dynamic Surface Coating , 2013, Advanced materials.

[24]  K. Jarrell,et al.  Surface Appendages of Archaea: Structure, Function, Genetics and Assembly , 2013, Life.

[25]  Robert G. Parton,et al.  Caveolae as plasma membrane sensors, protectors and organizers , 2013, Nature Reviews Molecular Cell Biology.

[26]  M. A. De la Cruz,et al.  Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation , 2013, Virulence.

[27]  P. Bruneval,et al.  Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model , 2013, PLoS pathogens.

[28]  X. Nassif,et al.  The Meningococcal Minor Pilin PilX Is Responsible for Type IV Pilus Conformational Changes Associated with Signaling to Endothelial Cells , 2012, Infection and Immunity.

[29]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[30]  K. Melican,et al.  Vascular colonization by Neisseria meningitidis. , 2012, Current opinion in microbiology.

[31]  L. Marzo,et al.  Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication , 2012, Front. Physio..

[32]  K. Orth,et al.  Manipulation of host membranes by bacterial effectors , 2011, Nature Reviews Microbiology.

[33]  G. Duménil Revisiting the extracellular lifestyle , 2011, Cellular microbiology.

[34]  Harvey T. McMahon,et al.  Molecular mechanism and physiological functions of clathrin-mediated endocytosis , 2011, Nature Reviews Molecular Cell Biology.

[35]  Ronald K. Taylor,et al.  Protection and Attachment of Vibrio cholerae Mediated by the Toxin-Coregulated Pilus in the Infant Mouse Model , 2011, Journal of bacteriology.

[36]  N. B. Viana,et al.  Cell cytoskeleton and tether extraction. , 2011, Biophysical journal.

[37]  Brooke A Jude,et al.  The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. , 2011, Journal of structural biology.

[38]  A. Ridley Life at the Leading Edge , 2011, Cell.

[39]  Manuel Théry,et al.  Simple and rapid process for single cell micro-patterning. , 2009, Lab on a chip.

[40]  S. Guadagnini,et al.  Extracellular Bacterial Pathogen Induces Host Cell Surface Reorganization to Resist Shear Stress , 2009, PLoS pathogens.

[41]  P. Kinnunen,et al.  Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins , 2009, Current Biology.

[42]  G. Dunny,et al.  Development and Use of an Efficient System for Random mariner Transposon Mutagenesis To Identify Novel Genetic Determinants of Biofilm Formation in the Core Enterococcus faecalis Genome , 2008, Applied and Environmental Microbiology.

[43]  Q. Sattentau,et al.  Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission , 2008, Nature Cell Biology.

[44]  I. Campbell,et al.  Extracellular matrix: from atomic resolution to ultrastructure. , 2007, Current opinion in cell biology.

[45]  Sonja Hess,et al.  Mycobacterium tuberculosis produces pili during human infection , 2007, Proceedings of the National Academy of Sciences.

[46]  F. Brochard-Wyart,et al.  Hydrodynamic narrowing of tubes extruded from cells , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[48]  J. Atkinson,et al.  Release of host‐derived membrane vesicles following pilus‐mediated adhesion of Neisseria gonorrhoeae , 2005, Cellular microbiology.

[49]  F. Brochard-Wyart,et al.  Wetting fibers with liposomes. , 2005, Journal of colloid and interface science.

[50]  Jacques Prost,et al.  Cooperative extraction of membrane nanotubes by molecular motors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Thanassi,et al.  Presence of Pili on the Surface of Francisella tularensis , 2004, Infection and Immunity.

[52]  I. Derényi,et al.  Giant vesicles under flows: Extrusion and retraction of tubes , 2003 .

[53]  F. Brochard-Wyart,et al.  Adhesion induced by mobile binders: Dynamics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  I. Derényi,et al.  Formation and interaction of membrane tubes. , 2002, Physical review letters.

[55]  P. Couraud,et al.  Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells. , 2002, Journal of cell science.

[56]  G. Huber,et al.  Fluid-membrane tethers: minimal surfaces and elastic boundary layers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  P. Bassereau,et al.  A minimal system allowing tubulation with molecular motors pulling on giant liposomes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[59]  J. Dai,et al.  Membrane tether formation from blebbing cells. , 1999, Biophysical journal.

[60]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[61]  J. Wehland,et al.  Internalin B is essential for adhesion and mediates the invasion of Listeria monocytogenes into human endothelial cells , 1998, Molecular microbiology.

[62]  S. Svetina,et al.  THEORETICAL ANALYSIS OF THE FORMATION OF MEMBRANE MICROTUBES ON AXIALLY STRAINED VESICLES , 1997 .

[63]  D Needham,et al.  Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions. , 1996, Biophysical journal.

[64]  R. Goldstein,et al.  Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers , 1995, Journal of bacteriology.

[65]  E. Evans,et al.  Hidden dynamics in rapid changes of bilayer shape , 1994 .

[66]  X. Nassif,et al.  Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells , 1993, Molecular microbiology.

[67]  T. Trust,et al.  Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis , 1991, Journal of bacteriology.

[68]  S. Normark,et al.  Fibronectin binding mediated by a novel class of surface organelles on Escherichia coll , 1989, Nature.

[69]  S. Falkow,et al.  Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells , 1987, Cell.

[70]  W. Todd,et al.  Arrangement of pili in colonies of Neisseria gonorrhoeae , 1984, Journal of bacteriology.

[71]  R. Waugh,et al.  Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments. , 1982, Biophysical journal.

[72]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[73]  J. Spudich,et al.  The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. , 1971, The Journal of biological chemistry.

[74]  S. Filler,et al.  Host cell invasion by medically important fungi. , 2014, Cold Spring Harbor perspectives in medicine.

[75]  D. Vignjevic,et al.  Basement membrane invasion assays: native basement membrane and chemoinvasion assay. , 2013, Methods in molecular biology.

[76]  M. van Deuren,et al.  Classification and pathogenesis of meningococcal infections. , 2012, Methods in molecular biology.

[77]  M. Gerwinski,et al.  Theory and Possible Experiments , 1997 .

[78]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[79]  I. Analysis,et al.  SURFACE VISCOSITY MEASUREMENTS FROM LARGE BILAYER VESICLE TETHER FORMATION , 1982 .