Efficient Computation of the Geodesic Voronoi Diagram of Points in a Simple Polygon (Extended Abstract)
暂无分享,去创建一个
[1] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[2] Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon , 1987, SCG '87.
[3] D. T. Lee,et al. Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.
[4] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[5] Takao Asano,et al. Voronoi Diagram for Points in a Simple Polygon , 1987 .
[6] Lenhart K. Schubert,et al. An optimal algorithm for constructing the Delaunay triangulation of a set of line segments , 1987, SCG '87.
[7] Subhash Suri,et al. Efficient computation of Euclidean shortest paths in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[8] Joseph S. B. Mitchell,et al. Shortest paths among obstacles in the plane , 1993, SCG '93.
[9] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[10] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[11] Leonidas J. Guibas,et al. A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).