An interactive decision-support system for multi-objective optimization of nonlinear dynamic processes with uncertainty

We develop an interactive decision support system for dynamic process optimization.The system considers multiple and conflicting objectives to increase sustainability.Operational risk due to parametric uncertainty is included as additional objective.Optimal trade-off solutions and operating policies are interactively visualized.The system is illustrated for the optimal operation of a chemical reactor. The manufacturing industry is faced with the challenge to constantly improve its processes, e.g., due to lower profit margins, more strict environmental policies and increased societal awareness. These three aspects are considered as the pillars of sustainable development and typically give rise to multiple and conflicting objectives. Hence, any decision made will require trade-offs to be evaluated and compromises to be made. To support decision making an interactive multi-objective framework is presented to optimize dynamic processes based on mathematical models. The framework includes a numerically efficient strategy to account for parametric uncertainty in the models and it allows to directly minimize the operational risks arising from this uncertainty. Hence, for the first time expert knowledge on the trade-offs between traditional objective functions and operational risks is readily and interactively available for the practitioners in the field of dynamic systems. The introduced interactive framework for multi-objective dynamic optimization under uncertainty is successfully tested for a three and five-objective fed-batch reactor case study with uncertain feed temperature and heat transfer parameters.

[1]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[2]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[3]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[4]  Kaisa Miettinen,et al.  A new achievement scalarizing function based on parameterization in multiobjective optimization , 2010, OR Spectrum.

[5]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[6]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[7]  Pu Li,et al.  A probabilistically constrained model predictive controller , 2002, Autom..

[8]  Sina Ober-Blöbaum,et al.  A multiobjective optimization approach for optimal control problems of mechanical systems with uncertainties , 2013, 2013 European Control Conference (ECC).

[9]  Vesa Ojalehto,et al.  Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems , 2015, Comput. Chem. Eng..

[10]  Christopher A. Mattson,et al.  Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization , 2005 .

[11]  Wolfgang Marquardt,et al.  Continuous and Discrete Composite Adjoints for the Hessian of the Lagrangian in Shooting Algorithms for Dynamic Optimization , 2009, SIAM J. Sci. Comput..

[12]  Minghe Sun,et al.  Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection , 2014, Eur. J. Oper. Res..

[13]  G. P. Rangaiah,et al.  Multi-objective optimization of the operation of an industrial low-density polyethylene tubular reactor using genetic algorithm and its jumping gene adaptations , 2006 .

[14]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[15]  Pu Li,et al.  Recent Developments in Computational Approaches to Optimization under Uncertainty and Application in Process Systems Engineering , 2014 .

[16]  Andrew Lewis,et al.  A Web-based System for Visualisation-driven Interactive Multi-objective Optimisation , 2014, ICCS.

[17]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[18]  Michael Bortz,et al.  Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets , 2014, Comput. Chem. Eng..

[19]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[20]  J. V. Salcedo,et al.  A new perspective on multiobjective optimization by enhanced normalized normal constraint method , 2008 .

[21]  Mariano Luque,et al.  Equivalent reference points in multiobjective programming , 2015, Expert Syst. Appl..

[22]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[23]  Jan Van Impe,et al.  Robust multi-objective optimal control of uncertain (bio)chemical processes , 2011 .

[24]  Debasis Sarkar,et al.  Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables , 2004, Comput. Chem. Eng..

[25]  Reza Tavakkoli-Moghaddam,et al.  A multi-objective scatter search for a mixed-model assembly line sequencing problem , 2007, Adv. Eng. Informatics.

[26]  Filip Logist,et al.  Novel insights for multi-objective optimisation in engineering using Normal Boundary Intersection and (Enhanced) Normalised Normal Constraint , 2012 .

[27]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[28]  A Kremling,et al.  Optimal experimental design with the sigma point method. , 2009, IET systems biology.

[29]  Ricardo H. C. Takahashi,et al.  INSPM: An interactive evolutionary multi-objective algorithm with preference model , 2014, Inf. Sci..

[30]  I. Jolliffe Principal Component Analysis , 2002 .

[31]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[32]  Azuraliza Abu Bakar,et al.  Multi-objective PSO algorithm for mining numerical association rules without a priori discretization , 2014, Expert Syst. Appl..

[33]  Adisa Azapagic,et al.  The application of life cycle assessment to process optimisation , 1999 .

[34]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[35]  T. Saaty,et al.  Why the magic number seven plus or minus two , 2003 .

[36]  Vesa Ojalehto,et al.  Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study , 2014, Expert Syst. Appl..

[37]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[38]  F. You,et al.  Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis , 2012 .

[39]  Gonzalo Guillén-Gosálbez,et al.  On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization , 2015, Comput. Chem. Eng..

[40]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .

[41]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[42]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[43]  Kaisa Miettinen,et al.  PAINT: Pareto front interpolation for nonlinear multiobjective optimization , 2012, Comput. Optim. Appl..

[44]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[45]  Dun-Wei Gong,et al.  Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems , 2013, Inf. Sci..

[46]  Moritz Diehl,et al.  Robust nonlinear optimal control of dynamic systems with affine uncertainties , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[47]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[48]  Luke E. K. Achenie,et al.  An approach to multicriteria optimization under uncertainty , 2006 .

[49]  Wolfgang Marquardt,et al.  Dynamic optimization of the load change of a large-scale chemical plant by adaptive single shooting , 2010, Comput. Chem. Eng..

[50]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[51]  Filip Logist,et al.  Multi-objective optimal control of chemical processes using ACADO toolkit , 2012, Comput. Chem. Eng..

[52]  Z. Nagy,et al.  Distributional uncertainty analysis using power series and polynomial chaos expansions , 2007 .

[53]  Filip Logist,et al.  Fast Pareto set generation for nonlinear optimal control problems with multiple objectives , 2010 .

[54]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[55]  Kathrin Klamroth,et al.  Pareto navigator for interactive nonlinear multiobjective optimization , 2010, OR Spectr..

[56]  Filip Logist,et al.  Multi-objective dynamic optimisation of cyclic chemical reactors with distributed parameters , 2012 .

[57]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[58]  Patrick M. Reed,et al.  A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO) , 2007, Environ. Model. Softw..

[59]  Kaisa Miettinen,et al.  Incremental user-interface development for interactive multiobjective optimization , 2013, Expert Syst. Appl..

[60]  Kishalay Mitra,et al.  Towards a better understanding of the epoxy-polymerization process using multi-objective evolutionary computation , 2004 .

[61]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[62]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls , 2014, Eur. J. Oper. Res..

[63]  Gabriele Eichfelder,et al.  Scalarizations for adaptively solving multi-objective optimization problems , 2009, Comput. Optim. Appl..

[64]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[65]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[66]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[67]  Moritz Diehl,et al.  Sigmapoint Approach for Robust Optimization of Nonlinear Dynamic Systems , 2012, SIMULTECH.

[68]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[69]  Jan Van Impe,et al.  Robust Optimization of Nonlinear Dynamic Systems with Application to a Jacketed Tubular Reactor , 2012 .

[70]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[71]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[72]  Kishalay Mitra,et al.  Multiobjective optimization of an industrial grinding operation under uncertainty , 2009 .

[73]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[74]  Consolación Gil,et al.  Wind turbine selection for wind farm layout using multi-objective evolutionary algorithms , 2014, Expert Syst. Appl..

[75]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization and decision making procedure , 2010, Appl. Soft Comput..