Efficient Online Timed Pattern Matching by Automata-Based Skipping

The timed pattern matching problem is an actively studied topic because of its relevance in monitoring of real-time systems. There one is given a log $w$ and a specification $\mathcal{A}$ (given by a timed word and a timed automaton in this paper), and one wishes to return the set of intervals for which the log $w$, when restricted to the interval, satisfies the specification $\mathcal{A}$. In our previous work we presented an efficient timed pattern matching algorithm: it adopts a skipping mechanism inspired by the classic Boyer--Moore (BM) string matching algorithm. In this work we tackle the problem of online timed pattern matching, towards embedded applications where it is vital to process a vast amount of incoming data in a timely manner. Specifically, we start with the Franek-Jennings-Smyth (FJS) string matching algorithm---a recent variant of the BM algorithm---and extend it to timed pattern matching. Our experiments indicate the efficiency of our FJS-type algorithm in online and offline timed pattern matching.

[1]  Dileep Kini,et al.  On Construction of Safety Signal Automata for $MITL[\: \mathcal{U}, \: \mathcal{S}]$ Using Temporal Projections , 2011, FORMATS.

[2]  Dejan Nickovic,et al.  From MITL to Timed Automata , 2006, FORMATS.

[3]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[4]  Thierry Lecroq,et al.  The exact online string matching problem: A review of the most recent results , 2013, CSUR.

[5]  Frantisek Franek,et al.  A simple fast hybrid pattern-matching algorithm , 2007, J. Discrete Algorithms.

[6]  Philip Koopman,et al.  A Case Study on Runtime Monitoring of an Autonomous Research Vehicle (ARV) System , 2015, RV.

[7]  Kenneth R. Butts,et al.  Powertrain control verification benchmark , 2014, HSCC.

[8]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[9]  Thomas A. Henzinger,et al.  Back to the future: towards a theory of timed regular languages , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[10]  Houssam Abbas,et al.  Benchmarks for Temporal Logic Requirements for Automotive Systems , 2014, ARCH@CPSWeek.

[11]  Paul Caspi,et al.  Timed regular expressions , 2002, JACM.

[12]  Dileep Kini,et al.  On construction of safety signal automata for MITL[ u, s] using temporal projections , 2011, FORMATS 2011.

[13]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[14]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[15]  Bruce W. Watson,et al.  A Boyer-Moore type algorithm for regular expression pattern matching , 1994 .

[16]  Dejan Nickovic,et al.  From Mtl to Deterministic Timed Automata , 2010, FORMATS.

[17]  Kim G. Larsen,et al.  Lower and upper bounds in zone-based abstractions of timed automata , 2004, International Journal on Software Tools for Technology Transfer.

[18]  Joël Ouaknine,et al.  Online Monitoring of Metric Temporal Logic , 2014, RV.

[19]  Matthias Függer,et al.  Runtime verification of embedded real-time systems , 2014, Formal Methods Syst. Des..

[20]  Calin Belta,et al.  A Decision Tree Approach to Data Classification using Signal Temporal Logic , 2016, HSCC.

[21]  Wolfgang Emmerich,et al.  Efficient online monitoring of web-service SLAs , 2008, SIGSOFT '08/FSE-16.

[22]  Aaron Kane,et al.  Runtime Monitoring for Safety-Critical Embedded Systems , 2015 .

[23]  Dogan Ulus Montre: A Tool for Monitoring Timed Regular Expressions , 2017, CAV.

[24]  Ichiro Hasuo,et al.  A Boyer-Moore Type Algorithm for Timed Pattern Matching , 2016, FORMATS.

[25]  Insup Lee,et al.  Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study , 2016, J. Comput. Sci. Eng..

[26]  Kim G. Larsen,et al.  Static Guard Analysis in Timed Automata Verification , 2003, TACAS.

[27]  Kim G. Larsen,et al.  Lower and Upper Bounds in Zone Based Abstractions of Timed Automata , 2004, TACAS.

[28]  Robert S. Boyer,et al.  A fast string searching algorithm , 1977, CACM.

[29]  Igor Walukiewicz,et al.  Efficient emptiness check for timed Büchi automata , 2010, Formal Methods in System Design.

[30]  Daniel Sunday,et al.  A very fast substring search algorithm , 1990, CACM.

[31]  Dejan Nickovic,et al.  Measuring with Timed Patterns , 2015, CAV.

[32]  Dogan Ulus,et al.  Timed Pattern Matching , 2014, FORMATS.

[33]  Dogan Ulus,et al.  Online Timed Pattern Matching Using Derivatives , 2016, TACAS.