Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease

[1]  M. Halliday,et al.  PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia , 2015, Acta Neuropathologica.

[2]  W. Scheper,et al.  The unfolded protein response in neurodegenerative diseases: a neuropathological perspective , 2015, Acta Neuropathologica.

[3]  J. L. Quesne,et al.  Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity , 2015, Cell Death and Disease.

[4]  I. Celardo,et al.  Unravelling mitochondrial pathways to Parkinson's disease , 2014, British journal of pharmacology.

[5]  L. Scorrano,et al.  Reduction of endoplasmic reticulum stress attenuates the defects caused by Drosophila mitofusin depletion , 2014, The Journal of cell biology.

[6]  M. Halliday,et al.  Targeting the unfolded protein response in neurodegeneration: A new approach to therapy , 2014, Neuropharmacology.

[7]  Sonia Gandhi,et al.  Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson’s disease , 2014, Nature Cell Biology.

[8]  J. Trojanowski,et al.  Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models , 2013, Nature Genetics.

[9]  P. Fischer,et al.  Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice , 2013, Science Translational Medicine.

[10]  M. Dietrich,et al.  Mitofusin 2 in POMC Neurons Connects ER Stress with Leptin Resistance and Energy Imbalance , 2013, Cell.

[11]  G. Voeltz,et al.  Endoplasmic reticulum–mitochondria contacts: function of the junction , 2012, Nature Reviews Molecular Cell Biology.

[12]  L. Shewchuk,et al.  Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). , 2012, Journal of medicinal chemistry.

[13]  D. Dinsdale,et al.  Sustained translational repression by eIF2α-P mediates prion neurodegeneration , 2012, Nature.

[14]  Philippe Pierre,et al.  Nuclear translation visualized by ribosome-bound nascent chain puromycylation , 2012, The Journal of cell biology.

[15]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[16]  K. Nose,et al.  Gene expression profiling identifies a role for CHOP during inhibition of the mitochondrial respiratory chain. , 2009, Journal of biochemistry.

[17]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.

[18]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[19]  Angela C. Poole,et al.  The PINK1/Parkin pathway regulates mitochondrial morphology , 2008, Proceedings of the National Academy of Sciences.

[20]  Kazuyuki Takata,et al.  Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4‐phenylbutyrate, a chemical chaperone , 2007, Journal of neurochemistry.

[21]  E. Yilmaz,et al.  Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes , 2006, Science.

[22]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[23]  J. C. Greene,et al.  Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease , 2005, Proceedings of the National Academy of Sciences of the United States of America.