Dopamine Neurons Control Striatal Cholinergic Neurons via Regionally Heterogeneous Dopamine and Glutamate Signaling

Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. Although the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here, we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons.

[1]  Jae-Ick Kim,et al.  Functional Roles of Neurotransmitters and Neuromodulators in the Dorsal Striatum Circuits: Glutamatergic and Gabaergic Transmission Thalamostriatal Circuit Local Gabaergic Circuits: Parvalbumin-expressing Fast-spiking Interneurons and Neuropeptide-y Positive Low-threshold Spiking Interneurons Neurom , 2022 .

[2]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[3]  Nao Chuhma,et al.  Dopamine Neurons Mediate a Fast Excitatory Signal via Their Glutamatergic Synapses , 2004, The Journal of Neuroscience.

[4]  Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties , 2013, Brain Structure and Function.

[5]  S. Iversen,et al.  Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum , 1975, Brain Research.

[6]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Kelly R. Tan,et al.  Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning , 2012, Nature.

[8]  Wei Li,et al.  Acute in vivo nicotine administration enhances synchrony among dopamine neurons. , 2011, Biochemical pharmacology.

[9]  R. Malenka,et al.  Drug-Evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling , 2011, Neuron.

[10]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[11]  Lei Yu,et al.  Bimodal effect of amphetamine on motor behaviors in C57BL/6 mice , 2007, Neuroscience Letters.

[12]  A. Rivera,et al.  Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype , 2002, The European journal of neuroscience.

[13]  Benjamin F. Grewe,et al.  Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation , 2012, Nature Methods.

[14]  S. Hersch,et al.  The dopamine transporter: immunochemical characterization and localization in brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Roberto Araya,et al.  Two-photon optical interrogation of individual dendritic spines with caged dopamine. , 2013, ACS chemical neuroscience.

[16]  D. Lovinger,et al.  Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. , 2012, Cell reports.

[17]  T. Momiyama,et al.  Dopamine D2‐like receptors selectively block N‐type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurones , 2001, The Journal of physiology.

[18]  D. Surmeier,et al.  D5 Dopamine Receptors Enhance Zn2+-Sensitive GABAA Currents in Striatal Cholinergic Interneurons through a PKA/PP1 Cascade , 1997, Neuron.

[19]  W. Schultz Updating dopamine reward signals , 2013, Current Opinion in Neurobiology.

[20]  Charles J. Wilson,et al.  The Cholinergic Interneurons of the Striatum: Intrinsic Properties Underlie Multiple Discharge Patterns , 2010 .

[21]  D. Grandy,et al.  Vesicular Dopamine Release Elicits an Inhibitory Postsynaptic Current in Midbrain Dopamine Neurons , 2004, Neuron.

[22]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[23]  J. Reynolds,et al.  Pause and rebound: sensory control of cholinergic signaling in the striatum , 2013, Trends in Neurosciences.

[24]  Charles J. Wilson,et al.  Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. , 2006, Journal of neurophysiology.

[25]  K. Deisseroth,et al.  Striatal Dopamine Release Is Triggered by Synchronized Activity in Cholinergic Interneurons , 2012, Neuron.

[26]  J. Reynolds,et al.  IH current generates the afterhyperpolarisation following activation of subthreshold cortical synaptic inputs to striatal cholinergic interneurons , 2009, Journal of Physiology.

[27]  G. Chiara Nucleus accumbens shell and core dopamine: differential role in behavior and addiction , 2002, Behavioural Brain Research.

[28]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[29]  Elyssa B. Margolis,et al.  Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. , 2007, Annual review of neuroscience.

[30]  Yan Dong,et al.  Exposure to cocaine regulates inhibitory synaptic transmission from the ventral tegmental area to the nucleus accumbens , 2013, The Journal of physiology.

[31]  M. Lohse,et al.  Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. , 2007, Advances in protein chemistry.

[32]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[33]  R. MacKinnon,et al.  X-ray structure of the mammalian GIRK2-beta gamma G-protein complex. , 2013 .

[34]  B. Sabatini,et al.  M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels , 2010, Neuron.

[35]  L. Descarries,et al.  Ultrastructural characterization of the mesostriatal dopamine innervation in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons , 2012, The European journal of neuroscience.

[36]  G. Stuber,et al.  Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate , 2010, The Journal of Neuroscience.

[37]  B. Sabatini,et al.  Dopaminergic neurons inhibit striatal output via non-canonical release of GABA , 2012, Nature.

[38]  A. Dickinson,et al.  Parallel and interactive learning processes within the basal ganglia: Relevance for the understanding of addiction , 2009, Behavioural Brain Research.

[39]  John T. Williams,et al.  Spontaneous Inhibitory Synaptic Currents Mediated by a G Protein-Coupled Receptor , 2013, Neuron.

[40]  R. Palmiter,et al.  Vesicular Glutamate Transport Promotes Dopamine Storage and Glutamate Corelease In Vivo , 2010, Neuron.

[41]  J. Tepper,et al.  Glutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens , 2010, The Journal of Neuroscience.

[42]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[43]  E. Benarroch Effects of acetylcholine in the striatum , 2012, Neurology.

[44]  A. Nieoullon,et al.  Ultrastructural features of the choline acetyltransferase-containing neurons and relationships with nigral dopaminergic and cortical afferent pathways in the rat striatum , 1993, Neuroscience.

[45]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[46]  Kenji F. Tanaka,et al.  Functional Connectome of the Striatal Medium Spiny Neuron , 2011, The Journal of Neuroscience.

[47]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[48]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[49]  K. Kullander,et al.  VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation , 2009, Proceedings of the National Academy of Sciences.