Effect of Charge Non-Uniformity on the Lithium Dendrites and Improvement by the LiF Interfacial Layer

[1]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[2]  Yong Yang,et al.  Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes , 2021, Journal of Materials Chemistry A.

[3]  Z. Wen,et al.  A 3D Cross‐Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet‐Type Solid‐State Lithium Batteries , 2020, Advanced Functional Materials.

[4]  Y. Qi,et al.  Modeling the electrical double layer at solid-state electrochemical interfaces , 2020, Nature Computational Science.

[5]  Yutao Li,et al.  Li metal deposition and stripping in a solid-state battery via Coble creep , 2020, Nature.

[6]  Guangyu Liu,et al.  Preventing Dendrite Growth by a Soft Piezoelectric Material , 2019, ACS Materials Letters.

[7]  Long-Qing Chen,et al.  Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes , 2019, Chemistry of Materials.

[8]  M. Islam,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[9]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[10]  Xiulin Fan,et al.  Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery , 2018, Science Advances.

[11]  Jiayan Luo,et al.  Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium‐Metal Anodes , 2018, Advanced materials.

[12]  Y. Qi,et al.  Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites , 2018, Journal of Power Sources.

[13]  E. Longo,et al.  Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first-principles calculations , 2018 .

[14]  Rui Zhang,et al.  Columnar Lithium Metal Anodes. , 2017, Angewandte Chemie.

[15]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[16]  Yue Qi,et al.  Simulation of the effect of contact area loss in all-solid-state Li-ion batteries , 2017 .

[17]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[18]  Martin Winter,et al.  Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density , 2017, Journal of Solid State Electrochemistry.

[19]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[20]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[21]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[22]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[23]  Donald J. Siegel,et al.  Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12 , 2017 .

[24]  V. Ferguson,et al.  Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte. , 2016, ACS applied materials & interfaces.

[25]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[26]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[27]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[28]  Yizhou Zhu,et al.  First Principles Study of Electrochemical and Chemical Stability of the Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries , 2016 .

[29]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[30]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[31]  M. Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[32]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[33]  Elson Longo,et al.  Structural and electronic analysis of the atomic scale nucleation of Ag on α-Ag2WO4 induced by electron irradiation , 2014, Scientific Reports.

[34]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[35]  J. Sakamoto,et al.  Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet , 2012, Journal of Materials Science.

[36]  N. Dudney,et al.  Mechanical characterization of Lipon films using nanoindentation , 2011 .

[37]  J. Janek,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[38]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[39]  N. J. Dudney,et al.  Solid-state thin-film rechargeable batteries , 2005 .

[40]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[45]  Z. Deng,et al.  Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .

[46]  N. Imanishi,et al.  Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal , 2013 .