Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
暂无分享,去创建一个
[1] Denis S. Grebenkov,et al. Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..
[2] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[3] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[4] Ronald H. W. Hoppe,et al. Adaptive finite element methods for the Laplace eigenvalue problem , 2010, J. Num. Math..
[5] Hehu Xie,et al. A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..
[6] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[7] Haijun Wu,et al. Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .
[8] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[9] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[10] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[11] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[12] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[13] Hao Li,et al. The adaptive finite element method based on multi-scale discretizations for eigenvalue problems , 2013, Comput. Math. Appl..
[14] Xiaozhe Hu,et al. Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..
[15] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[16] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[17] Stefano Giani,et al. Benchmark results for testing adaptive finite element eigenvalue procedures , 2012 .
[18] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[19] Zhimin Zhang,et al. Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..
[20] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[21] Ningning Yan,et al. Enhancing finite element approximation for eigenvalue problems by projection method , 2012 .
[22] F. Chatelin. Spectral approximation of linear operators , 2011 .
[23] I. Babuska,et al. The finite element method and its reliability , 2001 .
[24] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[25] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[26] Aihui Zhou,et al. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..
[27] C.-S. Chien,et al. A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..
[28] Andrey B. Andreev,et al. Superconvergence Postprocessing for Eigenvalues , 2002 .
[29] R. Durán,et al. ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .
[30] Raytcho D. Lazarov,et al. Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .
[31] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[32] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[33] Jinchao Xu,et al. Lower bounds of the discretization error for piecewise polynomials , 2013, Math. Comput..
[34] K. Kolman,et al. A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .
[35] Volker Mehrmann,et al. Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..
[36] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[37] Walter Greiner,et al. Quantum Mechanics: An Introduction , 1989 .
[38] Fang Liu,et al. Postprocessed Two-Scale Finite Element Discretizations, Part I , 2011, SIAM J. Numer. Anal..
[39] Zhimin Zhang,et al. The ultraconvergence of eigenvalues for bi-quadratic finite elements , 2012 .
[40] Aihui Zhou,et al. A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..
[41] A Review of A Posteriori Error Estimation , 1996 .
[42] Xingyu Gao,et al. A Finite Element Recovery Approach to Eigenvalue Approximations with Applications to Electronic Structure Calculations , 2013, J. Sci. Comput..
[43] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[44] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[45] Hai Bi,et al. Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..
[46] Aihui Zhou,et al. Three-scale finite element eigenvalue discretizations , 2008 .