Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems

Some numerical algorithms for elliptic eigenvalue problems are proposed, analyzed, and numerically tested. The methods combine advantages of the two-grid algorithm (Xu and Zhou in Math Comput 70(233):17–25, 2001), the two-space method (Racheva and Andreev in Comput Methods Appl Math 2:171–185, 2002), the shifted inverse power method (Hu and Cheng in Math Comput 80:1287–1301, 2011; Yang and Bi in SIAM J Numer Anal 49:1602–1624, 2011), and the polynomial preserving recovery enhancing technique (Naga et al. in SIAM J Sci Comput 28:1289–1300, 2006). Our new algorithms compare favorably with some existing methods and enjoy superconvergence property.

[1]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[2]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[3]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[4]  Ronald H. W. Hoppe,et al.  Adaptive finite element methods for the Laplace eigenvalue problem , 2010, J. Num. Math..

[5]  Hehu Xie,et al.  A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Haijun Wu,et al.  Enhancing eigenvalue approximation by gradient recovery on adaptive meshes , 2009 .

[8]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[10]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[11]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[12]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[13]  Hao Li,et al.  The adaptive finite element method based on multi-scale discretizations for eigenvalue problems , 2013, Comput. Math. Appl..

[14]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[15]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[16]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[17]  Stefano Giani,et al.  Benchmark results for testing adaptive finite element eigenvalue procedures , 2012 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[19]  Zhimin Zhang,et al.  Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..

[20]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[21]  Ningning Yan,et al.  Enhancing finite element approximation for eigenvalue problems by projection method , 2012 .

[22]  F. Chatelin Spectral approximation of linear operators , 2011 .

[23]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[24]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[25]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[26]  Aihui Zhou,et al.  Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates , 2006, Adv. Comput. Math..

[27]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[28]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[29]  R. Durán,et al.  ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .

[30]  Raytcho D. Lazarov,et al.  Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .

[31]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[32]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[33]  Jinchao Xu,et al.  Lower bounds of the discretization error for piecewise polynomials , 2013, Math. Comput..

[34]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[35]  Volker Mehrmann,et al.  Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations , 2011, Numer. Linear Algebra Appl..

[36]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[37]  Walter Greiner,et al.  Quantum Mechanics: An Introduction , 1989 .

[38]  Fang Liu,et al.  Postprocessed Two-Scale Finite Element Discretizations, Part I , 2011, SIAM J. Numer. Anal..

[39]  Zhimin Zhang,et al.  The ultraconvergence of eigenvalues for bi-quadratic finite elements , 2012 .

[40]  Aihui Zhou,et al.  A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..

[41]  A Review of A Posteriori Error Estimation , 1996 .

[42]  Xingyu Gao,et al.  A Finite Element Recovery Approach to Eigenvalue Approximations with Applications to Electronic Structure Calculations , 2013, J. Sci. Comput..

[43]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[44]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[45]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[46]  Aihui Zhou,et al.  Three-scale finite element eigenvalue discretizations , 2008 .