The effect of influential data, model and method on the precision of univariate calibration.

Building a calibration model with detection and quantification capabilities is identical to the task of building a regression model. Although commonly used by analysts, an application of the calibration model requires at first careful attention to the three components of the regression triplet (data, model, method), examining (a) the data quality of the proposed model; (b) the model quality; (c) the LS method to be used or a fulfillment of all least-squares assumptions. This paper summarizes these components, describes the effects of deviations from assumptions and considers the correction of such deviations: identifying influential points is the first step in least-squares model building, the calibration task depends on the regression model used, and finally the least squares LS method is based on assumptions of normality of errors, homoscedasticity, independence of errors, overly influential data points and independent variables being subject to error. When some assumptions are violated, the ordinary LS is inconvenient and robust M-estimates with the iterative method of reweighted least-squares must be used. The effects of influential points, heteroscedasticity and non-normality on the calibration precision limits are also elucidated. This paper also considers the proper construction of the statistical uncertainty expressed as confidence limits predicting an unknown concentration (or amount) value, and its dependence on the regression triplet. The authors' objectives were to provide a thorough treatment that includes pertinent references, consistent nomeclature, and related mathematical formulae to show by theory and illustrative examples those approaches best suited to typical problems in analytical chemistry. Two new algorithms, calibration and linear regression written in s-plus and enabling regression triplet analysis, the estimation of calibration precision limits, critical levels, detection limits and quantification limits with the statistical uncertainty of unknown concentrations, form the goal of this paper.

[1]  L. Currie International Recommendations Offered on Analytical Detection and Quantification Concepts and Nomenclature: Preamble, in Validation of Analytical Methods , 1999 .

[2]  H. Scheffé A Statistical Theory of Calibration , 1973 .

[3]  P. Rousseeuw,et al.  Least median of squares: a robust method for outlier and model error detection in regression and calibration , 1986 .

[4]  Beata Walczak Outlier detection in multivariate calibration , 1995 .

[5]  G. M. Tallis Note on a calibration problem , 1969 .

[6]  Anil K. Bera,et al.  A test for normality of observations and regression residuals , 1987 .

[7]  F. Xavier Rius,et al.  Detection limits in classical multivariate calibration models , 2000 .

[8]  Richard L. Smith,et al.  Measuring Marathon Courses: An Application of Statistical Calibration Theory , 1987 .

[9]  L. M. Schwartz Nonlinear calibration curves. , 1976, Analytical chemistry.

[10]  L. A. Currie,et al.  LIMITS FOR QUALITATIVE DETECTION AND QUANTITATIVE DETERMINATION. APPLICATION TO RADIOCHEMISTRY. , 1968 .

[11]  M. C. Ortiz,et al.  Robust procedure for calibration and calculation of the detection limit of trimipramine by adsorptive stripping voltammetry at a carbon paste electrode , 1993 .

[12]  R. Gibbons,et al.  Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration. , 1997, Analytical chemistry.

[13]  Klaus Danzer,et al.  Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration (IUPAC Recommendations 1998) , 1998 .

[14]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[15]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[16]  D. Jagner,et al.  Asymmetric distribution of results in calibration curve and standard addition evaluations , 1997 .

[17]  John Weiner,et al.  Letter to the Editor , 1992, SIGIR Forum.

[18]  Leonard Oppenheimer,et al.  Determining the lowest limit of reliable assay measurement , 1983 .

[19]  M. Forina,et al.  Chemometrics for analytical chemistry , 1992 .

[20]  Lloyd A. Currie,et al.  Detection and Quantification Capabilities and the Evaluation of Low-Level Data: Some International Perspectives and Continuing Challenges , 2000 .

[21]  Richard G. Brereton,et al.  Introduction to multivariate calibration in analytical chemistry , 2000 .

[22]  L. M. Schwartz,et al.  Lowest limit of reliable assay measurement with nonlinear calibration , 1983 .

[23]  G. Scollary,et al.  A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report) , 1997 .

[24]  An analysis of a bayes inverse regression method of confidence intervals in linear calibration , 1974 .

[25]  Lloyd A. Currie,et al.  Detection and quantification limits: origins and historical overview , 1997 .

[26]  A Simplified Approach to Calibration Confidence Sets , 1993 .

[27]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[28]  A. Wilson,et al.  DIFFICULTIES WITH DETERMINING THE DETECTION LIMIT WITH NONLINEAR CALIBRATION CURVES IN SPECTROMETRY , 1976 .

[29]  Bradley P. Carlin,et al.  A Sample Reuse Method for Accurate Parametric Empirical Bayes Confidence Intervals , 1991 .

[30]  Lloyd A. Currie,et al.  Nomenclature for the presentation of results of chemical analysis (IUPAC Recommendations 1994) , 1994 .

[31]  Ilya Kuselman,et al.  Analysis of long-term distributions of calibration parameters and calibration intervals for an atomic absorption spectrophotometer , 2001 .

[32]  R. Brereton,et al.  Crucial problems in regression modelling and their solutions. , 2002, The Analyst.

[33]  Lloyd A. Currie,et al.  DETECTION : INTERNATIONAL UPDATE, AND SOME EMERGING DI-LEMMAS INVOLVING CALIBRATION, THE BLANK, AND MULTIPLE DETECTION DECISIONS , 1997 .

[34]  Karl S. Booksh,et al.  Calibration of Surface Plasmon Resonance Refractometers Using Locally Weighted Parametric Regression , 1997 .

[35]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[36]  László J. Naszódi Elimination of the Bias in the Course of Calibration , 1978 .

[37]  D. MacDougall,et al.  Guidelines for data acquisition and data quality evaluation in environmental chemistry , 1980 .

[38]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[39]  Klaus Danzer,et al.  GUIDELINES FOR CALIBRATION IN ANALYTICAL CHEMISTRY , 1998 .

[40]  Richard L. Cooley,et al.  Exact Scheffé-type confidence intervals for output from groundwater flow models. 1. Use of hydrogeologic information , 1993 .

[41]  Ilya Kuselman Introduction to the proceedings of the International Conference on Metrology – Trends and Applications in Calibration and Testing Laboratories, 16–18 May 2000, Jerusalem, Israel , 2001 .

[42]  Robert D. Gibbons,et al.  Evaluation of approximate methods for calculating the limit of detection and limit of quantification , 1999 .

[43]  S. O. Farwell,et al.  Analytical Use of Linear Regression. Part I: Regression Procedures for Calibration and Quantitation , 1992 .

[44]  W Merkle,et al.  Statistical methods in regression and calibration analysis of chromosome aberration data , 1983, Radiation and environmental biophysics.

[45]  Lloyd A. Currie,et al.  Limits for qualitative detection and quantitative determination , 1968 .

[46]  L. A. Currie,et al.  International recommendations offered on analytical detection and quantification concepts and nomenclature1“Contribution of the National Institute of Standards and Technology; not subject to copyright”.1 , 1999 .

[47]  J. Militký,et al.  Detection of single influential points in OLS regression model building , 2001 .

[48]  M. Forina,et al.  PC-aided regression and related methods , 1994 .

[49]  Gregory R. Phillips,et al.  Comparison of conventional and robust regression in analysis of chemical data , 1983 .

[50]  Lloyd A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities1: (IUPAC Recommendations 1995) , 1999 .

[51]  K. Kamm,et al.  Statistische Definition der Bestimmungsgrenze , 1983 .

[52]  B. Hoadley A Bayesian Look at Inverse Linear Regression , 1970 .

[53]  J. Lee A note on the conditional approach to interval estimation in the calibration problem. , 1991, Biometrics.

[54]  L. A. Currie Detection: Overview of Historical, Societal, and Technical Issues , 1987 .

[55]  A Note on the Problem of Statistical Calibration , 1980 .

[56]  S. Ebel,et al.  Über den Vertrauensbereich bei der Kalibrierung und Analysenmessung mit ionen-sensitiven Elektroden , 1987 .

[57]  Joseph Berkson,et al.  Estimation of a Linear Function for a Calibration Line; Consideration of a Recent Proposal , 1969 .

[58]  E. J. Williams A Note on Regression Methods in Calibration , 1969 .

[59]  S. Ebel,et al.  Statistische Definition der Bestimmungsgrenze , 1984 .

[60]  Aleksandras Plikusas Nonlinear Calibration , .

[61]  T. Lwin [A Bayesian Analysis of the Linear Calibration Problem]: Discussion , 1981 .