Electrode/electrolyte interfacial engineering for aqueous Zn‐ion batteries

[1]  Boya Wang,et al.  Triple‐Functional Polyoxovanadate Cluster in Regulating Cathode, Anode, and Electrolyte for Tough Aqueous Zinc‐Ion Battery , 2022, Advanced Energy Materials.

[2]  I. Kim,et al.  Uniform and Oriented Zinc Deposition Induced by Artificial Nb2O5 Layer for Highly Reversible Zn Anode in Aqueous Zinc Ion Batteries , 2022, Energy Storage Materials.

[3]  Luyi Yang,et al.  Progress in interface structure and modification of zinc anode for aqueous batteries , 2022, Nano Energy.

[4]  Li Li,et al.  A Self‐Regulated Electrostatic Shielding Layer toward Dendrite‐Free Zn Batteries , 2022, Advanced materials.

[5]  Yongfu Zhu,et al.  Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery , 2022, Nano-Micro Letters.

[6]  Peixun Xiong,et al.  High‐Rate, Large Capacity, and Long Life Dendrite‐Free Zn Metal Anode Enabled by Trifunctional Electrolyte Additive with a Wide Temperature Range , 2022, Advanced science.

[7]  Chaojiang Niu,et al.  Large‐Scale Integration of a Zinc Metasilicate Interface Layer Guiding Well‐Regulated Zn Deposition , 2022, Advanced materials.

[8]  Chao Lai,et al.  Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode , 2022, Nano-Micro Letters.

[9]  Yunhui Huang,et al.  Monosodium Glutamate, an Effective Electrolyte Additive to Enhance Cycling Performance of Zn Anode in Aqueous Battery , 2022, Nano Energy.

[10]  Xingbo Liu,et al.  Polyvinyl Alcohol Coating Induced Preferred Crystallographic Orientation in Aqueous Zinc Battery Anodes , 2022, SSRN Electronic Journal.

[11]  X. Rui,et al.  Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadium‐Based Cathodes with Excellent Low‐Temperature Performance , 2022, Advanced Functional Materials.

[12]  Chengyi Hou,et al.  Synergistic Solvation and Interface Regulations of Eco‐Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries , 2022, Advanced Functional Materials.

[13]  Yunhui Huang,et al.  Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte , 2022, Nano Energy.

[14]  Guozhao Fang,et al.  Hydrogen Bond‐Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces , 2022, Advanced Functional Materials.

[15]  Shubin Yang,et al.  Charge‐Enriched Strategy Based on MXene‐Based Polypyrrole Layers Toward Dendrite‐Free Zinc Metal Anodes , 2022, Advanced Energy Materials.

[16]  Jian Yang,et al.  Site-Selective Adsorption on ZnF2/Ag Coated Zn for Advanced Aqueous Zinc-Metal Batteries at Low Temperature. , 2022, Nano letters.

[17]  Long Qie,et al.  A Highly Reversible, Dendrite-free Zinc Metal Anodes enabled by a dual-layered interface , 2022, Energy Storage Materials.

[18]  Yan Zhang,et al.  Self‐Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes , 2022, Advanced Functional Materials.

[19]  Quan-hong Yang,et al.  A Self‐Regulated Interface toward Highly Reversible Aqueous Zinc Batteries , 2022, Advanced Energy Materials.

[20]  Yongfeng Zhou,et al.  Toward Hydrogen‐Free and Dendrite‐Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes , 2022, Advanced science.

[21]  Shangpeng Gao,et al.  Ultrastable Zinc Anode by Simultaneously Manipulating Solvation Sheath and Inducing Oriented Deposition with PEG Stability Promoter. , 2021, Small.

[22]  Baolin Guo,et al.  Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering , 2021, Nano-Micro Letters.

[23]  Guozhao Fang,et al.  Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries , 2021, Energy Storage Materials.

[24]  Zhengnan Tian,et al.  Controlled Deposition of Zinc‐Metal Anodes via Selectively Polarized Ferroelectric Polymers , 2021, Advanced materials.

[25]  Chuanxin He,et al.  A New Insight into Ultrastable Zn Metal Batteries Enabled by In Situ Built Multifunctional Metallic Interphase , 2021, Advanced Functional Materials.

[26]  Wei-Nien Su,et al.  Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries , 2021, Journal of Power Sources.

[27]  Chenyang Zhao,et al.  A Dynamic and Self‐Adapting Interface Coating for Stable Zn‐Metal Anodes , 2021, Advanced materials.

[28]  Chenyang Zhao,et al.  Fast-growing Multifunctional ZnMoO4 Protection Layer Enable Dendrite-free and Hydrogen-suppressed Zn Anode , 2021, Energy Storage Materials.

[29]  Licheng Miao,et al.  Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode , 2021, Energy Storage Materials.

[30]  Peiyi Wu,et al.  Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. , 2021, Small.

[31]  Seyed Milad Hosseini,et al.  A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO2 Batteries , 2021, ACS Energy Letters.

[32]  Xin Zhao,et al.  Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions , 2021, Advanced materials.

[33]  Zaiping Guo,et al.  Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries , 2021, Advanced Functional Materials.

[34]  Fernando A. Soto,et al.  Highly reversible aqueous Zn batteries enabled by zincophilic-zincophobic interfacial layer and interrupted hydrogen bond electrolyte. , 2021, Angewandte Chemie.

[35]  Mingfei Shao,et al.  Confinement of Zinc Salt in Ultrathin Heterogeneous Film to Stabilize Zinc Metal Anode. , 2021, Small.

[36]  S. Liang,et al.  Layered Barium Vanadate Cathodes for Aqueous Zinc Batteries: Enhancing Cycling Stability through Inhibition of Vanadium Dissolution , 2021, ACS Applied Energy Materials.

[37]  W. Mai,et al.  Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries: Achieved by a Low-Cost Glucose Additive. , 2021, Angewandte Chemie.

[38]  Shulai Lei,et al.  Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H2O)n 2+ Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc‐Ion Batteries , 2021, Advanced science.

[39]  I. Kim,et al.  Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life , 2021 .

[40]  Jia Liu,et al.  An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries. , 2021, Small methods.

[41]  Changbao Zhu,et al.  Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies , 2021 .

[42]  C. Sriprachuabwong,et al.  Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries , 2021 .

[43]  Yijie Zhang,et al.  Toward Planar and Dendrite‐Free Zn Electrodepositions by Regulating Sn‐Crystal Textured Surface , 2021, Advanced materials.

[44]  Guozhao Fang,et al.  Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte , 2021 .

[45]  Xingxing Gu,et al.  Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition , 2021, Nano-Micro Letters.

[46]  Xiu Shen,et al.  Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte , 2021 .

[47]  C. Zhi,et al.  Toward Practical High‐Areal‐Capacity Aqueous Zinc‐Metal Batteries: Quantifying Hydrogen Evolution and a Solid‐Ion Conductor for Stable Zinc Anodes , 2021, Advanced materials.

[48]  Jinyun Liu,et al.  A Self‐Healing Flexible Quasi‐Solid Zinc‐Ion Battery Using All‐In‐One Electrodes , 2021, Advanced science.

[49]  Zhijie Wang,et al.  Electrolyte Design for In Situ Construction of Highly Zn2+‐Conductive Solid Electrolyte Interphase to Enable High‐Performance Aqueous Zn‐Ion Batteries under Practical Conditions , 2021, Advanced materials.

[50]  Jinbao Zhao,et al.  Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes , 2021, Advanced materials.

[51]  Yunhui Huang,et al.  Inhibition of Manganese Dissolution in Mn2O3 Cathode with Controllable Ni2+ Incorporation for High‐Performance Zinc Ion Battery , 2021, Advanced Functional Materials.

[52]  Xiaobo Ji,et al.  Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery , 2021 .

[53]  Zaiping Guo,et al.  Boosting Zn electrode reversibility in aqueous electrolyte using low-cost antisolvents. , 2021, Angewandte Chemie.

[54]  D. Brett,et al.  Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives , 2021, ACS Energy Letters.

[55]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[56]  Seungho Yu,et al.  Unraveling the Mechanisms of Lithium Metal Plating/Stripping via In Situ/Operando Analytical Techniques , 2020, Advanced Energy Materials.

[57]  Su‐Ting Han,et al.  Neuromorphic Engineering: Neuromorphic Engineering: From Biological to Spike‐Based Hardware Nervous Systems (Adv. Mater. 52/2020) , 2020, Advanced Materials.

[58]  F. Hou,et al.  Strategies for the Stabilization of Zn Metal Anodes for Zn‐Ion Batteries , 2020, Advanced Energy Materials.

[59]  Hong Liu,et al.  Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries , 2020, Science China Chemistry.

[60]  A. Grimaud,et al.  Water‐in‐Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality , 2020, Advanced Energy Materials.

[61]  Yitai Qian,et al.  NaTi2(PO4)3 Solid‐State Electrolyte Protection Layer on Zn Metal Anode for Superior Long‐Life Aqueous Zinc‐Ion Batteries , 2020, Advanced Functional Materials.

[62]  Yuyan Shao,et al.  Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes , 2020, Advanced Functional Materials.

[63]  A. Gross,et al.  Operando pH Measurements Decipher H+/Zn2+ Intercalation Chemistry in High-Performance Aqueous Zn/δ-V2O5 Batteries , 2020, ACS energy letters.

[64]  Seung‐Taek Myung,et al.  New Insight on Open‐Structured Sodium Vanadium Oxide as High‐Capacity and Long Life Cathode for Zn–Ion Storage: Structure, Electrochemistry, and First‐Principles Calculation , 2020, Advanced Energy Materials.

[65]  Changbao Zhu,et al.  Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries , 2020 .

[66]  Z. Li,et al.  Interfacial chemical binding and improved kinetics assisting stable aqueous Zn–MnO2 batteries , 2020 .

[67]  Yitai Qian,et al.  Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries , 2020 .

[68]  M. Srinivasan,et al.  Emerging rechargeable aqueous aluminum ion battery: Status, challenges, and outlooks , 2020 .

[69]  Xiaobo Ji,et al.  Revealing the role of crystal orientation of protective layers for stable zinc anode , 2020, Nature Communications.

[70]  Yong‐Sheng Hu,et al.  Interface Concentrated‐Confinement Suppressing Cathode Dissolution in Water‐in‐Salt Electrolyte , 2020, Advanced Energy Materials.

[71]  Kevin Huang,et al.  A High Performing Zn‐Ion Battery Cathode Enabled by In Situ Transformation of V 2 O 5 Atomic Layers , 2020, Angewandte Chemie.

[72]  G. Cao,et al.  Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. , 2020, Chemical reviews.

[73]  D. Aurbach,et al.  Current status and future directions of multivalent metal-ion batteries , 2020, Nature Energy.

[74]  Yitai Qian,et al.  A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn2+ Coinsertion. , 2020, Small.

[75]  Chunsheng Wang,et al.  Designing Dendrite‐Free Zinc Anodes for Advanced Aqueous Zinc Batteries , 2020, Advanced Functional Materials.

[76]  Guozhao Fang,et al.  Electrochemical Activation of Manganese‐Based Cathode in Aqueous Zinc‐Ion Electrolyte , 2020, Advanced Functional Materials.

[77]  Guozhao Fang,et al.  Zn/MnO2 battery chemistry with dissolution-deposition mechanism , 2020 .

[78]  Qinghua Tian,et al.  Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. , 2020, Journal of colloid and interface science.

[79]  Yu‐Guo Guo,et al.  Tunable Layered (Na,Mn)V8O20·nH2O Cathode Material for High‐Performance Aqueous Zinc Ion Batteries , 2020, Advanced science.

[80]  Qinghua Zhang,et al.  Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density , 2020, Advanced materials.

[81]  Jiang Zhou,et al.  Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode , 2020 .

[82]  S. Passerini,et al.  Challenges and Strategies for High‐Energy Aqueous Electrolyte Rechargeable Batteries , 2020, Angewandte Chemie.

[83]  H. Dai,et al.  High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes , 2020 .

[84]  R. Kühnel,et al.  Perspective—Electrochemical Stability of Water-in-Salt Electrolytes , 2020, Journal of The Electrochemical Society.

[85]  Jiang Zhou,et al.  A Sieve‐Functional and Uniform‐Porous Kaolin Layer toward Stable Zinc Metal Anode , 2020, Advanced Functional Materials.

[86]  Xiaobo Ji,et al.  Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. , 2020, Angewandte Chemie.

[87]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[88]  Jingfa Li,et al.  Constructing α‐MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery , 2020 .

[89]  Feng Li,et al.  A bi-cation electrolyte for a 1.7 V aqueous Zn ion battery. , 2020, ACS applied materials & interfaces.

[90]  D. Biro,et al.  Revealing the Local pH Value Changes of Acidic Aqueous Zinc Ion Batteries with a Manganese Dioxide Electrode during Cycling , 2020, Journal of The Electrochemical Society.

[91]  Xia Li,et al.  Unlocking the Door of Boosting Biodirected Structures for High‐Performance VNxOy/C by Controlling the Reproduction Mode , 2020, Advanced science.

[92]  Do‐Heyoung Kim,et al.  Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery , 2019, Nano-Micro Letters.

[93]  Yuyi Liu,et al.  In Situ Ag Nanoparticles Reinforced Pseudo‐Zn–Air Reaction Boosting Ag 2 V 4 O 11 as High‐Performance Cathode Material for Aqueous Zinc‐Ion Batteries , 2019, Small Methods.

[94]  G. Cui,et al.  Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation , 2019, Nature Communications.

[95]  Xiaobo Ji,et al.  Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes , 2019, Advanced Materials Interfaces.

[96]  Zhiqiang Niu,et al.  Design Strategies of Vanadium-based Aqueous Zinc-Ion Batteries. , 2019, Angewandte Chemie.

[97]  Guozhao Fang,et al.  Cathode Interfacial Layer Formation via in Situ Electrochemically Charging in Aqueous Zinc-Ion Battery. , 2019, ACS nano.

[98]  M. Srinivasan,et al.  Layered VOPO4 as a Cathode Material for Rechargeable Zinc-Ion Battery: Effect of Polypyrrole Intercalation in the Host and Water Concentration in the Electrolyte , 2019, ACS Applied Energy Materials.

[99]  Xiaoqi Sun,et al.  A Zn(ClO4)2 Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. , 2019, ACS applied materials & interfaces.

[100]  Yi Cui,et al.  Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries , 2019, ACS Energy Letters.

[101]  Jitao Chen,et al.  Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes , 2019, Science Advances.

[102]  Xiaobo Ji,et al.  The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive , 2019, Angewandte Chemie.

[103]  L. Mai,et al.  Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries , 2019, Nano Energy.

[104]  Gongzheng Yang,et al.  Pseudo‐Zn–Air and Zn‐Ion Intercalation Dual Mechanisms to Realize High‐Areal Capacitance and Long‐Life Energy Storage in Aqueous Zn Battery , 2019, Advanced Energy Materials.

[105]  Xi-hong Lu,et al.  Dendrite‐Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn‐Ion Batteries , 2019, Advanced materials.

[106]  Yonggang Wang,et al.  Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries , 2019, Applied Surface Science.

[107]  Zaiping Guo,et al.  Toward High‐Performance Hybrid Zn‐Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive , 2019, Advanced Functional Materials.

[108]  C. Zhi,et al.  Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. , 2019, ACS nano.

[109]  Chenglong Zhao,et al.  Building aqueous K-ion batteries for energy storage , 2019, Nature Energy.

[110]  Xiulei Ji,et al.  ZnCl2 “Water‐in‐Salt” Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode , 2019, Advanced Functional Materials.

[111]  Zhiqiang Niu,et al.  Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries. , 2019, Angewandte Chemie.

[112]  M. Wagemaker,et al.  Mechanistic Insight into the Electrochemical Performance of Zn/VO2 Batteries with an Aqueous ZnSO4 Electrolyte , 2019, Advanced Energy Materials.

[113]  Guozhao Fang,et al.  Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High‐Energy‐Density and Durable Aqueous Zinc‐Ion Battery , 2019, Advanced Functional Materials.

[114]  Nian Liu,et al.  Graphene oxide-modified zinc anode for rechargeable aqueous batteries , 2019, Chemical Engineering Science.

[115]  Dipan Kundu,et al.  Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof. , 2018, ACS applied materials & interfaces.

[116]  T. Miyasaka A decade of perovskite photovoltaics , 2019, Nature Energy.

[117]  Luyi Yang,et al.  Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes , 2018, Chem.

[118]  Xianluo Hu,et al.  Conformal Conducting Polymer Shells on V2O5 Nanosheet Arrays as a High‐Rate and Stable Zinc‐Ion Battery Cathode , 2018, Advanced Materials Interfaces.

[119]  S. Banerjee,et al.  It’s Not Over until the Big Ion Dances: Potassium Gets Its Groove On , 2018, Joule.

[120]  Jianqiu Li,et al.  Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit , 2018, Joule.

[121]  Jiang Zhou,et al.  Recent Advances in Aqueous Zinc-Ion Batteries , 2018, ACS Energy Letters.

[122]  Kang Xu,et al.  How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. , 2018, Angewandte Chemie.

[123]  H. Fan,et al.  Recent Advances in Zn‐Ion Batteries , 2018, Advanced Functional Materials.

[124]  L. Mai,et al.  Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode , 2018, Advanced Materials Interfaces.

[125]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[126]  Chunsheng Wang,et al.  Progress in Aqueous Rechargeable Sodium‐Ion Batteries , 2018 .

[127]  M. Pharr,et al.  Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition. , 2018, ACS nano.

[128]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[129]  Yong Lu,et al.  High-capacity aqueous zinc batteries using sustainable quinone electrodes , 2018, Science Advances.

[130]  L. Mai,et al.  Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. , 2018, Small.

[131]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[132]  L. Mai,et al.  Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life. , 2017, ACS applied materials & interfaces.

[133]  Xiulin Fan,et al.  High-Voltage Aqueous Magnesium Ion Batteries , 2017, ACS central science.

[134]  Jun Chen,et al.  Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities , 2017, Nature Communications.

[135]  T. Hoang,et al.  Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries. , 2017, ACS applied materials & interfaces.

[136]  Albert L. Lipson,et al.  A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery , 2016 .

[137]  C. Yoon,et al.  Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. , 2016, ChemSusChem.

[138]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[139]  Yi Cui,et al.  Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation. , 2016, Angewandte Chemie.

[140]  Jun Liu,et al.  Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries. , 2016, ACS applied materials & interfaces.

[141]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[142]  H. Alshareef,et al.  Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage , 2016 .

[143]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[144]  Jianhua Qian,et al.  Preparation and characterisation of rutile titanium dioxide of special hollow microspheres , 2016 .

[145]  Zhen Liu,et al.  Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid–water mixtures , 2015 .

[146]  Anubhav Jain,et al.  Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures , 2015 .

[147]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[148]  Dean J. Miller,et al.  Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach , 2014, Nature Communications.

[149]  Feiyu Kang,et al.  Preparation and Characterization of MnO2/acid-treated CNT Nanocomposites for Energy Storage with Zinc Ions , 2014 .

[150]  Wei Chen,et al.  SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-ion battery performance. , 2014, Small.

[151]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[152]  R. Li,et al.  Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material , 2013 .

[153]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[154]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[155]  N. Sadrieh,et al.  Quantitative measurement of cyanide released from Prussian Blue* , 2007, Clinical toxicology.

[156]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[157]  R. Harjula,et al.  Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate(II) , 1997 .