Type 2 diabetes: genetic data sharing to advance complex disease research

[1]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[2]  T. Byers Excess Mortality among Persons with Type 2 Diabetes. , 2016, The New England journal of medicine.

[3]  Kyle J. Gaulton,et al.  Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.

[4]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[5]  B. Shields,et al.  A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults , 2015, Diabetes Care.

[6]  Peter N. Robinson,et al.  Human genotype–phenotype databases: aims, challenges and opportunities , 2015, Nature Reviews Genetics.

[7]  M. McCarthy,et al.  Loss-of-Function Mutations in the Cell-Cycle Control Gene CDKN2A Impact on Glucose Homeostasis in Humans , 2015, Diabetes.

[8]  Gil Alterovitz,et al.  All the World's a Stage: Facilitating Discovery Science and Improved Cancer Care through the Global Alliance for Genomics and Health. , 2015, Cancer discovery.

[9]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[10]  Benjamin S. Glicksberg,et al.  Identification of type 2 diabetes subgroups through topological analysis of patient similarity , 2015, Science Translational Medicine.

[11]  Tanya M. Teslovich,et al.  Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci , 2015, Nature Genetics.

[12]  E. Birney,et al.  Using human genetics to make new medicines , 2015, Nature reviews genetics.

[13]  Manolis Kellis,et al.  FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. , 2015, The New England journal of medicine.

[14]  Benjamin J. Keller,et al.  Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND) , 2015, PLoS genetics.

[15]  Kyoung-Jae Won,et al.  Genetic Variation Determines PPARγ Function and Anti-diabetic Drug Response In Vivo , 2015, Cell.

[16]  Tom R. Gaunt,et al.  Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. , 2015, The lancet. Diabetes & endocrinology.

[17]  Christian Gieger,et al.  Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation , 2015, PLoS genetics.

[18]  B. Nordestgaard,et al.  HDL Cholesterol and Risk of Type 2 Diabetes: A Mendelian Randomization Study , 2015, Diabetes.

[19]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[20]  D. van der A,et al.  A Mendelian Randomization Study of Circulating Uric Acid and Type 2 Diabetes , 2015, Diabetes.

[21]  D. Altshuler,et al.  IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins. , 2015, Cell metabolism.

[22]  Kyle J. Gaulton,et al.  The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated Variation and Test Hypotheses About Complex Disease , 2015, PLoS genetics.

[23]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[24]  Inês Barroso,et al.  Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility , 2015, Nature communications.

[25]  Debbie A Lawlor,et al.  Association Analysis of 29,956 Individuals Confirms That a Low-Frequency Variant at CCND2 Halves the Risk of Type 2 Diabetes by Enhancing Insulin Secretion , 2015, Diabetes.

[26]  D. Altshuler,et al.  High-throughput luminescent reporter of insulin secretion for discovering regulators of pancreatic Beta-cell function. , 2015, Cell metabolism.

[27]  Fei Gao,et al.  An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins , 2014, Nature Communications.

[28]  Tom R. Gaunt,et al.  Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes , 2014, Diabetes.

[29]  Brian T. Lee,et al.  The UCSC Genome Browser database: 2015 update , 2014, Nucleic Acids Res..

[30]  M. McCarthy,et al.  Common Genetic Variants Highlight the Role of Insulin Resistance and Body Fat Distribution in Type 2 Diabetes, Independent of Obesity , 2014, Diabetes.

[31]  M. Weedon,et al.  Targeted Allelic Expression Profiling in Human Islets Identifies cis-Regulatory Effects for Multiple Variants Identified by Type 2 Diabetes Genome-Wide Association Studies , 2014, Diabetes.

[32]  Han Xu,et al.  Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. , 2014, American journal of human genetics.

[33]  B. Alizadeh,et al.  Bilirubin as a Potential Causal Factor in Type 2 Diabetes Risk: A Mendelian Randomization Study , 2014, Diabetes.

[34]  L. Groop,et al.  Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism , 2014, Proceedings of the National Academy of Sciences.

[35]  Kyle J. Gaulton,et al.  Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus , 2014, PLoS genetics.

[36]  Pierre Fontanillas,et al.  Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes , 2014, Proceedings of the National Academy of Sciences.

[37]  G. Rutter,et al.  ADCY5 Couples Glucose to Insulin Secretion in Human Islets , 2014, Diabetes.

[38]  Thomas J. Wang,et al.  Metabolite Traits and Genetic Risk Provide Complementary Information for the Prediction of Future Type 2 Diabetes , 2014, Diabetes Care.

[39]  M. Woo,et al.  PTEN Deletion in Pancreatic α-Cells Protects Against High-Fat Diet–Induced Hyperglucagonemia and Insulin Resistance , 2014, Diabetes.

[40]  Nicholette D. Palmer,et al.  Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes , 2014, PLoS genetics.

[41]  J. Al-Aama,et al.  A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes , 2014, Nature.

[42]  Amy L. Williams,et al.  Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. , 2014, JAMA.

[43]  Inês Barroso,et al.  Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity , 2014, Diabetes.

[44]  M. Fornage,et al.  Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection , 2014, Diabetes.

[45]  C. Ling,et al.  Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes , 2014, Diabetes.

[46]  Mark I. McCarthy,et al.  A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.

[47]  S. Kahn,et al.  Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future , 2014, The Lancet.

[48]  Jørgen K. Kanters,et al.  KCNQ1 Long QT Syndrome Patients Have Hyperinsulinemia and Symptomatic Hypoglycemia , 2014, Diabetes.

[49]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[50]  Thomas Meitinger,et al.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes , 2014, Nature Genetics.

[51]  C. Ling,et al.  Genome-Wide DNA Methylation Analysis of Human Pancreatic Islets from Type 2 Diabetic and Non-Diabetic Donors Identifies Candidate Genes That Influence Insulin Secretion , 2014, PLoS genetics.

[52]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[53]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[54]  Christian Fuchsberger,et al.  A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. , 2014, American journal of human genetics.

[55]  S. Reardon Pharma firms join NIH on drug development , 2014, Nature.

[56]  Kari Stefansson,et al.  Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.

[57]  M. Daly,et al.  Searching for missing heritability: Designing rare variant association studies , 2014, Proceedings of the National Academy of Sciences.

[58]  C. Gieger,et al.  Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms , 2014, Cell.

[59]  Mark I. McCarthy,et al.  Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.

[60]  Tanya M. Teslovich,et al.  Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico , 2013, Nature.

[61]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[62]  K. Kristiansen,et al.  Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. , 2013, American journal of human genetics.

[63]  Jason Flannick,et al.  Evaluating empirical bounds on complex disease genetic architecture , 2013, Nature Genetics.

[64]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[65]  Stefan Johansson,et al.  Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes , 2013, Nature Genetics.

[66]  Mark I. McCarthy,et al.  Mendelian Randomization Studies Do Not Support a Causal Role for Reduced Circulating Adiponectin Levels in Insulin Resistance and Type 2 Diabetes , 2013, Diabetes.

[67]  L. Groop,et al.  Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes , 2013, Molecular and Cellular Endocrinology.

[68]  D. Altshuler,et al.  Validating therapeutic targets through human genetics , 2013, Nature Reviews Drug Discovery.

[69]  E. Riboli,et al.  Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications , 2013, Nature Genetics.

[70]  Sara M. Willems,et al.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis , 2013, BDJ.

[71]  Halit Ongen,et al.  Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome , 2013, Genome research.

[72]  K. Mohlke,et al.  Allele-Specific Transcriptional Activity at Type 2 Diabetes–Associated Single Nucleotide Polymorphisms in Regions of Pancreatic Islet Open Chromatin at the JAZF1 Locus , 2013, Diabetes.

[73]  M. McCarthy,et al.  Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets , 2013, Diabetes.

[74]  Kyle J. Gaulton,et al.  The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis , 2013, PloS one.

[75]  Christian Fuchsberger,et al.  Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion , 2012, Nature Genetics.

[76]  B. Stranger,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012, Nature Genetics.

[77]  D. Torrents,et al.  Identification of Novel Type 2 Diabetes Candidate Genes Involved in the Crosstalk between the Mitochondrial and the Insulin Signaling Systems , 2012, PLoS genetics.

[78]  M. McCarthy,et al.  Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes , 2012, Diabetologia.

[79]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[80]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[81]  M. McCarthy,et al.  Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. , 2012, Cell metabolism.

[82]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[83]  J. Levy,et al.  PTEN mutations as a cause of constitutive insulin sensitivity and obesity. , 2012, The New England journal of medicine.

[84]  E. Gamazon,et al.  Genetic risk factors for type 2 diabetes: a trans-regulatory genetic architecture? , 2012, American journal of human genetics.

[85]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[86]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[87]  Tanya M. Teslovich,et al.  The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits , 2012, PLoS genetics.

[88]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[89]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[90]  M. McCarthy,et al.  Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes , 2012, Diabetes.

[91]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[92]  T. Lehtimäki,et al.  Circulating Metabolite Predictors of Glycemia in Middle-Aged Men and Women , 2012, Diabetes Care.

[93]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[94]  Laura J. Scott,et al.  Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases , 2012, PLoS genetics.

[95]  Peter Kraft,et al.  Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis , 2012, Nature Genetics.

[96]  M. Goldman,et al.  The Innovative Medicines Initiative: A European Response to the Innovation Challenge , 2012, Clinical pharmacology and therapeutics.

[97]  Matthieu Defrance,et al.  DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients , 2012, The EMBO journal.

[98]  Inês Barroso,et al.  Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes , 2012, Nature Genetics.

[99]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[100]  A. Gloyn,et al.  GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. , 2011, Molecular genetics and metabolism.

[101]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[102]  Tien Yin Wong,et al.  Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.

[103]  Hideki Matsui,et al.  Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. , 2011, The Journal of clinical investigation.

[104]  Ayellet V. Segrè,et al.  The Lin28/let-7 Axis Regulates Glucose Metabolism , 2011, Cell.

[105]  L. Groop,et al.  Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study , 2011, Diabetologia.

[106]  Eric Banks,et al.  Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction , 2011, Nature Genetics.

[107]  Mark I. McCarthy,et al.  Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes , 2011, Nature Genetics.

[108]  Tom R. Gaunt,et al.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance , 2011, Diabetes.

[109]  E. Zeggini,et al.  Synthetic Associations Are Unlikely to Account for Many Common Disease Genome-Wide Association Signals , 2011, PLoS biology.

[110]  David B. Goldstein,et al.  The Importance of Synthetic Associations Will Only Be Resolved Empirically , 2011, PLoS biology.

[111]  Naomi R. Wray,et al.  Synthetic Associations Created by Rare Variants Do Not Explain Most GWAS Results , 2011, PLoS biology.

[112]  M. McCarthy Genomics, type 2 diabetes, and obesity. , 2010, The New England journal of medicine.

[113]  C. Freeman,et al.  Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes , 2010, Nature Genetics.

[114]  Stephen C. J. Parker,et al.  Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. , 2010, Cell metabolism.

[115]  Yusuke Nakamura,et al.  A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.

[116]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[117]  D. Altshuler,et al.  Consistent Association of Type 2 Diabetes Risk Variants Found in Europeans in Diverse Racial and Ethnic Groups , 2010, PLoS genetics.

[118]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[119]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[120]  M. King,et al.  Genetic Heterogeneity in Human Disease , 2010, Cell.

[121]  T. Assimes,et al.  Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans , 2010, Diabetes.

[122]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[123]  Kyle J. Gaulton,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[124]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[125]  David B. Goldstein,et al.  Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.

[126]  G. Rutter Think zinc: New roles for zinc in the control of insulin secretion , 2010, Islets.

[127]  K. Dewar,et al.  Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans , 2009, Nature.

[128]  Boris Lenhard,et al.  Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3 , 2009, Proceedings of the National Academy of Sciences.

[129]  J. Hirschhorn Genomewide association studies--illuminating biologic pathways. , 2009, The New England journal of medicine.

[130]  D. Goldstein Common genetic variation and human traits. , 2009, The New England journal of medicine.

[131]  K. Hemminki,et al.  Familial Risks for Type 2 Diabetes in Sweden , 2009, Diabetes Care.

[132]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[133]  Nicola L. Beer,et al.  The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver , 2009, Human molecular genetics.

[134]  M. Loder,et al.  Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants , 2009, Diabetes.

[135]  Ralph Kimball,et al.  The Data Warehouse Lifecycle Toolkit , 2009 .

[136]  Ralph Kimball,et al.  Kimball's Data Warehouse Toolkit Classics: The Data Warehouse Toolkit, 2nd Edition; The Data Warehouse Lifecycle, 2nd Edition; The Data Warehouse ETL Toolk , 2009 .

[137]  M. Daly,et al.  Genetic Mapping in Human Disease , 2008, Science.

[138]  Manuel A. R. Ferreira,et al.  Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.

[139]  W. Bodmer,et al.  Common and rare variants in multifactorial susceptibility to common diseases , 2008, Nature Genetics.

[140]  F. Harrell Faculty Opinions recommendation of Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. , 2008 .

[141]  M. Fowler Microvascular and Macrovascular Complications of Diabetes , 2008, Clinical Diabetes.

[142]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[143]  J. Gulcher,et al.  A variant in CDKAL1 influences insulin response and risk of type 2 diabetes , 2007, Nature Genetics.

[144]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[145]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[146]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[147]  Weihua Guan,et al.  Meta-Analysis of 23 Type 2 Diabetes Linkage Studies from the International Type 2 Diabetes Linkage Analysis Consortium , 2007, Human Heredity.

[148]  T. Wadden,et al.  Consent for genetics studies among clinical trial participants: findings from Action for Health in Diabetes (Look AHEAD) , 2006, Clinical trials.

[149]  David M Nathan,et al.  TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. , 2006, The New England journal of medicine.

[150]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[151]  P. Stenson,et al.  Human Gene Mutation Database (HGMD®): 2003 update , 2003, Human mutation.

[152]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[153]  M. McCarthy,et al.  Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. , 2003, Diabetes.

[154]  E. Lander,et al.  On the allelic spectrum of human disease. , 2001, Trends in genetics : TIG.

[155]  J. Pritchard Are rare variants responsible for susceptibility to complex diseases? , 2001, American journal of human genetics.

[156]  Eric S. Lander,et al.  The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes , 2000, Nature Genetics.

[157]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[158]  J. Danesh,et al.  Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes , 2017 .

[159]  M. Anubha Large-scale exome chip association analysis identifies novel type 2 diabetes susceptibility loci and highlights candidate effector genes , 2016 .

[160]  Tanya M. Teslovich,et al.  Association analyses of 249 , 796 individuals reveal 18 new loci associated with body mass index , 2012 .

[161]  N. Rahman,et al.  A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2010 .

[162]  J. Deelen,et al.  A Mendelian randomization study , 2022 .

[163]  in Risk: A Mendelian Randomization Study” , 2022 .