Beam energy dependence of net- Λ fluctuations measured by the STAR experiment at the BNL Relativistic Heavy Ion Collider

© 2020 American Physical Society. The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the quantum chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. Net-protons and net-kaons have been used as proxies for the net-baryon number and net-strangeness, respectively. We report the measurement of efficiency- and centrality-bin width-corrected cumulant ratios (C2/C1, C3/C2) of net-Λ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality, and rapidity. The results are for Au+Au collisions at five beam energies (sNN=19.6, 27, 39, 62.4, and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to ultrarelativistic quantum molecular dynamics (UrQMD) and hadron resonance gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. UrQMD describes the measured net-ΛC1 and C3 at 200 GeV reasonably well but deviates from C2, and the deviation increases as a function of collision energy. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon, and net-charge data, indicate Λ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing with temperatures obtained from net-proton fluctuations. The net-Λ cumulants show a weak but finite dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

G. S. Averichev | Y. Wang | T. Liu | S. Oh | R. Pak | J. Sandweiss | L. Adamczyk | S. Fazio | P. Federič | A. Gibson | J. Jia | S. Kabana | M. Przybycien | Juergen Thomas | Z. Yang | Z. Zhang | J. Singh | X. Liu | H. Spinka | Qian Yang | S. Radhakrishnan | I. Chakaberia | F. Geurts | S. Salur | O. Evdokimov | A. Chatterjee | J. Roberts | D. Smirnov | Shangfeng Yang | Z. Ye | K. Yip | J. Chen | B. Pawlik | D. Underwood | M. Shao | B. Stringfellow | J. Zhao | P. Sahu | Y. Yang | J. Lauret | M. Csanád | H. Ritter | L. Zhang | I. Deppner | N. Herrmann | Z. Ahammed | R. Bellwied | L. Bland | A. Brandin | H. Caines | M. Sánchez | D. Cebra | M. Cherney | W. Christie | H. Crawford | A. Derevschikov | L. Didenko | J. Dunlop | J. Engelage | G. Eppley | E. Finch | Y. Fisyak | J. Harris | T. Humanic | G. Igo | W. Jacobs | E. Judd | D. Keane | A. Kisiel | P. Kravtsov | K. Krueger | J. Landgraf | A. Lebedev | R. Lednický | M. Lisa | T. Ljubičić | W. Llope | R. Longacre | R. Majka | S. Margetis | H. Matis | N. Minaev | L. Nogach | G. Odyniec | A. Ogawa | V. Okorokov | Y. Panebratsev | J. Pluta | J. Porter | R. Ray | J. Romero | J. Schambach | N. Schmitz | J. Seger | P. Seyboth | E. Shahaliev | B. Srivastava | M. Strikhanov | A. Suaide | M. Šumbera | A. Tang | S. Trentalange | M. Tokarev | O. Tsai | T. Ullrich | G. Buren | A. Vasiliev | S. Voloshin | F. Wang | G. Westfall | H. Wieman | S. Wissink | R. Witt | N. Xu | Z. Xu | P. Shanmuganathan | Yunpeng Liu | W. Xie | Xiangming Sun | C. Markert | X. Chen | Y. Sun | Zhigang Xiao | B. Mohanty | S. Chattopadhyay | J. Cheng | X. Zhu | B. Huang | N. Smirnov | J. Webb | A. Gupta | R. K. Elayavalli | N. Sahoo | D. Anderson | Y. Feng | M. Kelsey | P. Huo | C. Zhou | S. Das | J. Adams | A. Behera | W. Schmidke | A. Bhasin | J. Bielčík | J. Bielčíková | I. Kisel | O. Matonoha | Z. Moravcova | H. Pei | Q. Shou | A. Timmins | H. Zbroszczyk | Xiaoming Zhang | Chong Kim | D. Kikola | I. Vassiliev | M. Aggarwal | M. Mondal | D. Tlustý | Y. Li | J. Putschke | R. Ma | C. Jena | P. Tribedy | S. Esumi | J. Adam | J. Mazer | K. Nayak | S. Singha | M. Zyzak | J. K. Adkins | G. Agakishiev | I. Alekseev | A. Aparin | E. Aschenauer | M. U. Ashraf | F. Atetalla | A. Attri | V. Bairathi | K. Barish | I. Bordyuzhin | J. Brandenburg | J. Butterworth | P. Chaloupka | B. Chan | F. Chang | Z. Chang | N. Chankova-Bunzarova | T. Dedovich | X. Dong | J. Drachenberg | T. Edmonds | N. Elsey | R. Esha | O. Eyser | R. Fatémi | J. Fedorišin | P. Filip | L. Fulek | C. Gagliardi | T. Galatyuk | K. Gopal | D. Grosnick | W. Guryn | A. Hamad | Ahmed M. Hamed | S. Heppelmann | L. Holub | Y. Hong | S. Horvat | X. Huang | A. Jentsch | K. Jiang | S. Jowzaee | X. Ju | S. Kagamaster | D. Kalinkin | K. Kang | D. Kapukchyan | K. Kauder | H. Ke | A. Kechechyan | Y. Khyzhniak | T. Kinghorn | M. Kocan | L. Kochenda | L. Kosarzewski | L. Kramárik | N. Mudiyanselage | Lokesh Kumar | J. Kwasizur | R. Lacey | J. Lee | C. Li | W. Li | X. Li | R. Licenik | F. Liu | H. Liu | Z. Liu | S. Luo | G. Ma | Y. Ma | N. Magdy | S. Mioduszewski | I. Mooney | D. Morozov | M. Nasim | D. Nemes | M. Nie | G. Nigmatkulov | T. Niida | T. Nonaka | B. Page | D. Pawłowska | C. Perkins | M. Posik | N. Pruthi | A. Quintero | S. Ramachandran | O. Rogachevskiy | L. Ruan | J. Rusnak | B. Schweid | F. Seck | M. Sergeeva | R. Seto | N. Shah | F. Shen | W. Shen | S. Shi | E. Sichtermann | R. Sikora | M. Simko | W. Solyst | P. Sorensen | T. Stanislaus | M. Stefaniak | D. Stewart | B. Summa | B. Surrow | D. Svirida | P. Szymanski | Z. Tang | A. Taranenko | T. Tarnowsky | C. Tomkiel | R. Tribble | S. Tripathy | Z. Tu | I. Upsal | J. Vanek | S. Vokál | P. Wang | L. Wen | Y. Wu | G. Xie | H. Xu | Y. Xu | L. Yi | W. Zha | S. Zhang | Y. Zhang | C. Zhong | M. Zurek | Gang Wang | Qingnian Xu | S. Huang | P. Liu | T. Sugiura | J. Bryslawskyj | D. Mishra | R. Aoyama | A. Bassill | I. Bunzarov | C. Dilks | A. Lipiec | M. Lomnitz | D. Mallick | K. Meehan | J. Mei | R. L. Pinter | R. Reed | O. Rusňáková | S. Siejka | B. Tu | Liang He | T. Huang | T. Lin | Z. Zhu | F. Videbæk | Y. Ji | A. Ewigleben | Xi-Wang Luo | Chen Yang | Lan Ma | Ying Liang | H. Huang | Peng Liu | D. Zhang | J. Nelson | Zhanwen Zhu | D. Kikoła | J. Bielcik | T. Liu | Xiwang Luo | Te-Chuan Huang | A. Gupta

[1]  M. Sprague,et al.  Cancer image classification based on DenseNet model , 2018, Journal of Physics: Conference Series.

[2]  Z. Fodor,et al.  Off-diagonal correlators of conserved charges from lattice QCD and how to relate them to experiment , 2019, Physical Review D.

[3]  Efficiency correction for cumulants of multiplicity distributions based on track-by-track efficiency , 2019, Physical Review C.

[4]  R. Bellwied,et al.  Freeze-out temperature from net-kaon fluctuations at energies available at the BNL Relativistic Heavy Ion Collider , 2019, Physical Review C.

[5]  G. S. Averichev,et al.  Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions , 2019, Physical Review C.

[6]  C. Pruneau Role of baryon number conservation in measurements of fluctuations , 2019, Physical Review C.

[7]  Claudia Ratti,et al.  Lattice QCD and heavy ion collisions: a review of recent progress , 2018, Reports on progress in physics. Physical Society.

[8]  G. S. Averichev,et al.  Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC , 2017, Physics Letters B.

[9]  A. Rustamov Net-baryon fluctuations measured with ALICE at the CERN LHC , 2017, 1704.05329.

[10]  S. Esumi,et al.  More efficient formulas for efficiency correction of cumulants and effect of using averaged efficiency , 2017, 1702.07106.

[11]  G. S. Averichev,et al.  Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program , 2017, 1701.07065.

[12]  Xiaofeng Luo,et al.  Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview , 2017, Nuclear Science and Techniques.

[13]  P. Braun-Munzinger,et al.  Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions , 2016, 1612.00702.

[14]  R. Bellwied Sequential hadronization and the opportunities it presents , 2016 .

[15]  T. Nayak,et al.  Diagonal and off-diagonal susceptibilities of conserved quantities in relativistic heavy-ion collisions , 2016, 1606.09573.

[16]  R. Gavai The QCD critical point: an exciting Odyssey in the Femto-world , 2016 .

[17]  S. Sharma,et al.  Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan , 2015, 1512.06987.

[18]  Unified description of efficiency correction and error estimation for moments of conserved quantities in heavy-ion collisions , 2014, 1410.3914.

[19]  R. Bellwied,et al.  Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas , 2014, 1402.1238.

[20]  R. Bellwied,et al.  Freeze-out conditions from net-proton and net-charge fluctuations at RHIC , 2014, 1403.4903.

[21]  G. S. Averichev,et al.  Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC , 2013, 1309.5681.

[22]  Z. Fodor,et al.  Freeze-out parameters: lattice meets experiment. , 2013, Physical review letters.

[23]  Jinghua Fu,et al.  Higher moments of net-proton multiplicity distributions in heavy ion collisions at chemical freeze-out , 2013 .

[24]  D. K. Mishra,et al.  Conserved number fluctuations in a hadron resonance gas model , 2013, 1304.7133.

[25]  N. Xu,et al.  Volume fluctuation and auto-correlation effects in themoment analysis of net-proton multiplicitydistributions in heavy-ion collisions , 2013, 1302.2332.

[26]  G. Westfall,et al.  First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions , 2012, 1210.8102.

[27]  A. Bazavov,et al.  Freeze-out conditions in heavy ion collisions from QCD thermodynamics. , 2012, Physical review letters.

[28]  C. DeTar,et al.  Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model , 2012, 1203.0784.

[29]  W. Marsden I and J , 2012 .

[30]  Xiaofeng Luo Error Estimation for Moments Analysis in Heavy-Ion Collision Experiments , 2011, 1109.0593.

[31]  Xiaofeng Luo,et al.  Scale for the Phase Diagram of Quantum Chromodynamics , 2011, Science.

[32]  M. Stephanov,et al.  Sign of kurtosis near the QCD critical point. , 2011, Physical review letters.

[33]  K. Redlich,et al.  Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations , 2010, 1007.2581.

[34]  G. H. Corral,et al.  Relativistic heavy-ion physics , 2010, 1010.3164.

[35]  M. Stephanov,et al.  Non-Gaussian fluctuations near the QCD critical point. , 2008, Physical review letters.

[36]  Sourendu Gupta,et al.  QCD at finite chemical potential with six time slices , 2008, 0806.2233.

[37]  S. Ejiri Canonical partition function and finite density phase transition in lattice QCD , 2008, 0804.3227.

[38]  Peter Steinberg,et al.  Glauber Modeling in High Energy Nuclear Collisions , 2007, nucl-ex/0701025.

[39]  Z. Fodor,et al.  The order of the quantum chromodynamics transition predicted by the standard model of particle physics , 2006, Nature.

[40]  Hans Bichsel,et al.  A method to improve tracking and particle identification in TPCs and silicon detectors , 2006 .

[41]  J. Thomas,et al.  The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC , 2003, nucl-ex/0301015.

[42]  S. Bass,et al.  RELATIVISTIC HADRON-HADRON COLLISIONS IN THE ULTRA-RELATIVISTIC QUANTUM MOLECULAR DYNAMICS MODEL , 1999, hep-ph/9909407.

[43]  F. Wilczek,et al.  QCD at finite baryon density: nucleon droplets and color superconductivity , 1997, hep-ph/9711395.