New Opportunities for the Formal Proof of Computational Real Geometry? (Extended Abstract)
暂无分享,去创建一个
Matthew England | Gereon Kremer | James Davenport | Zak Tonks | Erika 'Abrah'am | J. Davenport | Gereon Kremer | M. England | Zak Tonks | Erika 'Abrah'am
[1] Assia Mahboubi,et al. Implementing the cylindrical algebraic decomposition within the Coq system , 2007, Mathematical Structures in Computer Science.
[2] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[3] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[4] Cesare Tinelli,et al. The SMT-LIB Standard: Version 1.2 , 2005 .
[5] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients , 1983 .
[6] Christopher W. Brown. Projection and Quantifier Elimination Using Non-uniform Cylindrical Algebraic Decomposition , 2017, ISSAC.
[7] Changbo Chen,et al. An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions , 2012, ASCM.
[8] Assia Mahboubi. Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.
[9] Daniel Kroening,et al. SC2: Satisfiability Checking Meets Symbolic Computation - (Project Paper) , 2016, CICM.
[10] Zak Tonks,et al. A Poly-algorithmic Quantifier Elimination Package in Maple , 2019, MC.
[11] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[12] Christopher W. Brown. Open Non-uniform Cylindrical Algebraic Decompositions , 2015, ISSAC.
[13] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[14] Sebastian Junges,et al. SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox - (Tool Presentation) , 2012, SAT.
[15] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[16] Assia Mahboubi,et al. A formal quantifier elimination for algebraically closed fields , 2010, AISC'10/MKM'10/Calculemus'10.
[17] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[18] H. R. Wüthrich,et al. Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.
[19] James H. Davenport,et al. Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driven Search Using Cylindrical Algebraic Coverings , 2020, ArXiv.
[20] Assia Mahboubi,et al. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination , 2012, Log. Methods Comput. Sci..
[21] A. Seidenberg. A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .
[22] Marek Kosta,et al. New concepts for real quantifier elimination by virtual substitution , 2016 .
[23] Thomas Sturm,et al. Better Answers to Real Questions , 2014, SMT.
[24] Matthew England,et al. Truth table invariant cylindrical algebraic decomposition , 2014, J. Symb. Comput..
[25] James H. Davenport,et al. The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.
[26] Matthew England,et al. Cylindrical Algebraic Decomposition with Equational Constraints , 2019, J. Symb. Comput..
[27] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[28] Saugata Basu,et al. New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.
[29] Scott McCallum. On propagation of equational constraints in CAD-based quantifier elimination , 2001, ISSAC '01.
[30] Scott McCallum,et al. An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.
[31] Christopher W. Brown. Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..
[32] Scott McCallum,et al. On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.
[33] Leonardo Mendonça de Moura,et al. Solving non-linear arithmetic , 2012, ACCA.
[34] Clark W. Barrett,et al. The SMT-LIB Standard Version 2.0 , 2010 .
[35] Scott McCallum,et al. Validity proof of Lazard's method for CAD construction , 2016, J. Symb. Comput..