New Opportunities for the Formal Proof of Computational Real Geometry? (Extended Abstract)

The purpose of this paper is to explore the question "to what extent could we produce formal, machine-verifiable, proofs in real algebraic geometry?" The question has been asked before but as yet the leading algorithms for answering such questions have not been formalised. We present a thesis that a new algorithm for ascertaining satisfiability of formulae over the reals via Cylindrical Algebraic Coverings [Abraham, Davenport, England, Kremer, \emph{Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driver Search Using Cylindrical Algebraic Coverings}, 2020] might provide trace and outputs that allow the results to be more susceptible to machine verification than those of competing algorithms.

[1]  Assia Mahboubi,et al.  Implementing the cylindrical algebraic decomposition within the Coq system , 2007, Mathematical Structures in Computer Science.

[2]  Michel Coste,et al.  Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..

[3]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[4]  Cesare Tinelli,et al.  The SMT-LIB Standard: Version 1.2 , 2005 .

[5]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients , 1983 .

[6]  Christopher W. Brown Projection and Quantifier Elimination Using Non-uniform Cylindrical Algebraic Decomposition , 2017, ISSAC.

[7]  Changbo Chen,et al.  An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions , 2012, ASCM.

[8]  Assia Mahboubi Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.

[9]  Daniel Kroening,et al.  SC2: Satisfiability Checking Meets Symbolic Computation - (Project Paper) , 2016, CICM.

[10]  Zak Tonks,et al.  A Poly-algorithmic Quantifier Elimination Package in Maple , 2019, MC.

[11]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[12]  Christopher W. Brown Open Non-uniform Cylindrical Algebraic Decompositions , 2015, ISSAC.

[13]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[14]  Sebastian Junges,et al.  SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox - (Tool Presentation) , 2012, SAT.

[15]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[16]  Assia Mahboubi,et al.  A formal quantifier elimination for algebraically closed fields , 2010, AISC'10/MKM'10/Calculemus'10.

[17]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[18]  H. R. Wüthrich,et al.  Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.

[19]  James H. Davenport,et al.  Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driven Search Using Cylindrical Algebraic Coverings , 2020, ArXiv.

[20]  Assia Mahboubi,et al.  Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination , 2012, Log. Methods Comput. Sci..

[21]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[22]  Marek Kosta,et al.  New concepts for real quantifier elimination by virtual substitution , 2016 .

[23]  Thomas Sturm,et al.  Better Answers to Real Questions , 2014, SMT.

[24]  Matthew England,et al.  Truth table invariant cylindrical algebraic decomposition , 2014, J. Symb. Comput..

[25]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[26]  Matthew England,et al.  Cylindrical Algebraic Decomposition with Equational Constraints , 2019, J. Symb. Comput..

[27]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[28]  Saugata Basu,et al.  New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.

[29]  Scott McCallum On propagation of equational constraints in CAD-based quantifier elimination , 2001, ISSAC '01.

[30]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[31]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[32]  Scott McCallum,et al.  On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.

[33]  Leonardo Mendonça de Moura,et al.  Solving non-linear arithmetic , 2012, ACCA.

[34]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[35]  Scott McCallum,et al.  Validity proof of Lazard's method for CAD construction , 2016, J. Symb. Comput..