Fault-tolerant quantum computing with three-dimensional surface codes

Quantum computers are far more error-prone than their classical counterparts. Therefore, to build a quantum computer capable of running large-scale quantum algorithms, we must use the techniques of quantum error correction to ensure that the computer produces the correct output even when its components are unreliable. However, the resource requirements of building such a fault-tolerant quantum computer are currently prohibitive. Here, we examine the utility of using three-dimensional (3D) surface codes in a fault-tolerant quantum computer. This family of topological error-correcting codes is a generalization of the well-known 2D surface code to three spatial dimensions. We show that certain 3D surface codes have a transversal logical non-Clifford gate. In a quantum computing architecture, a non-Clifford gate is required to achieve computational universality. Transversal gates do not entangle qubits in different codes, so they are naturally fault tolerant because they do not spread errors. Next, we consider the problem of decoding 3D surface codes. In a quantum error-correcting code, we cannot observe the qubits directly, so we measure parity-check operators to gain information about the state of the code. Decoding is the problem of estimating what error has occurred given a list of unsatisfied parity checks. We observe that 3D surface codes offer asymmetric protection against bit-flip and phase-flip errors, but in both cases, we find that a threshold error rate exists below which we can suppress logical errors by increasing the size of the code. We use our results about logical gates and decoding to propose two fault-tolerant quantum computing architectures that utilize 3D surface codes. Finally, we compare the resource requirements of our architectures with the requirements of leading quantum computing architectures based on topological codes. We find that one of our architectures may be competitive with the leading architectures, depending on the properties of the physical systems used to build the qubits.

[1]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[2]  Geoffrey Grinstein,et al.  Can complex structures be generically stable in a noisy world? , 2004, IBM J. Res. Dev..

[3]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[4]  John Preskill,et al.  Protected gates for topological quantum field theories , 2014, 1409.3898.

[5]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[6]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[7]  J. Eisert,et al.  Cellular automaton decoders of topological quantum memories in the fault tolerant setting , 2015, 1511.05579.

[8]  Y. Ozeki,et al.  MULTICRITICAL DYNAMICS FOR THE J ISING MODEL , 1998 .

[9]  Péter Gács,et al.  A Simple Three-Dimensional Real-Time Reliable Cellular Array , 1988, J. Comput. Syst. Sci..

[10]  Xiaotong Ni,et al.  Scalable Neural Network Decoders for Higher Dimensional Quantum Codes , 2017, 1710.09489.

[11]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[12]  Mark Howard,et al.  Unifying Gate Synthesis and Magic State Distillation. , 2016, Physical review letters.

[13]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[14]  H. Bombin,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[15]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[16]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[17]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[18]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[19]  Nicolas Delfosse,et al.  Efficient color code decoders in d≥2 dimensions from toric code decoders , 2019, Quantum.

[20]  A. Lubotzky,et al.  Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds , 2013, 1310.5555.

[21]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[22]  Beni Yoshida,et al.  Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes , 2010, 1007.4601.

[23]  Jonathan E. Moussa,et al.  Transversal Clifford gates on folded surface codes , 2016, 1603.02286.

[24]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[25]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[26]  Bennett,et al.  Role of irreversibility in stabilizing complex and nonergodic behavior in locally interacting discrete systems. , 1985, Physical review letters.

[27]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[28]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[29]  Pradeep Kiran Sarvepalli,et al.  On the Local Equivalence of 2D Color Codes and Surface Codes with Applications , 2018, 1804.00866.

[30]  John Preskill,et al.  Fault-tolerant quantum computation versus Gaussian noise , 2008, 0810.4953.

[31]  H. Bombin,et al.  Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.

[32]  Theodore J. Yoder,et al.  The disjointness of stabilizer codes and limitations on fault-tolerant logical gates , 2017, 1710.07256.

[33]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[34]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[35]  David Poulin,et al.  Generalized surface codes and packing of logical qubits , 2016, ArXiv.

[36]  A. G. Fowler,et al.  Threshold error rates for the toric and surface codes , 2009, 0905.0531.

[37]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[38]  M. Hasenbusch,et al.  Magnetic-glassy multicritical behavior of the three-dimensional +- J Ising model , 2007, 0707.2866.

[39]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[40]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[41]  B. M. Terhal,et al.  Renormalization Group Decoder for a Four-Dimensional Toric Code , 2017, IEEE Transactions on Information Theory.

[42]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[43]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[44]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[45]  Claudio Castelnovo,et al.  Topological order in a three-dimensional toric code at finite temperature , 2008, 0804.3591.

[46]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[47]  Stephen D. Bartlett,et al.  Locality-Preserving Logical Operators in Topological Stabiliser Codes , 2017, 1709.00020.

[48]  David Poulin,et al.  Subsystem surface codes with three-qubit check operators , 2012, Quantum Inf. Comput..

[49]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[50]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[51]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[52]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[53]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[54]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[55]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[56]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[57]  E. Knill Scalable quantum computing in the presence of large detected-error rates , 2003, quant-ph/0312190.

[58]  Xiao-Gang Wen Quantum orders in an exact soluble model. , 2003, Physical review letters.

[59]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[60]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[61]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[63]  H. Bombin Resilience to time-correlated noise in quantum computation , 2016, 1605.03679.

[64]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[65]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[66]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[67]  Earl T. Campbell,et al.  Qudit color codes and gauge color codes in all spatial dimensions , 2015, 1503.08800.

[68]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[69]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[70]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[71]  Zhenyu Cai,et al.  A Silicon Surface Code Architecture Resilient Against Leakage Errors , 2019, Quantum.

[72]  Benjamin J. Brown A fault-tolerant non-Clifford gate for the surface code in two dimensions , 2019, Science Advances.

[73]  Simon Burton Spectra of Gauge Code Hamiltonians , 2018, 1801.03243.

[74]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[75]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[76]  Anthony Leverrier,et al.  Golden codes: quantum LDPC codes built from regular tessellations of hyperbolic 4-manifolds , 2017, Quantum Information and Computation.

[77]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[78]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[79]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[80]  N. J. A. Sloane,et al.  The Invariants of the Cli ord , 1999 .

[81]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[82]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[83]  Tetsuo Matsui,et al.  Phase structure of the random plaquette Z(2) gauge model: Accuracy threshold for a toric quantum memory , 2004, quant-ph/0401101.

[84]  W. Ehrenberg,et al.  The Refractive Index in Electron Optics and the Principles of Dynamics , 1949 .

[85]  H. Kesten,et al.  Inequalities with applications to percolation and reliability , 1985 .

[86]  Barbara M. Terhal,et al.  Local decoders for the 2D and 4D toric code , 2016, Quantum Inf. Comput..

[87]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[88]  Simon J. Devitt,et al.  Lattice surgery translation for quantum computation , 2016, 1608.05208.

[89]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[90]  Matthew B. Hastings,et al.  Trivial low energy states for commuting Hamiltonians, and the quantum PCP conjecture , 2012, Quantum Inf. Comput..

[91]  Walter Burke,et al.  Topological color code and symmetry-protected topological phases , 2015 .

[92]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[93]  Christopher T. Chubb,et al.  Statistical mechanical models for quantum codes with correlated noise , 2018, 1809.10704.

[94]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[95]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[96]  Hector Bombin,et al.  2D quantum computation with 3D topological codes , 2018, 1810.09571.

[97]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[98]  Andrew M. Steane,et al.  Fast fault-tolerant filtering of quantum codewords , 2008 .

[99]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[100]  Masato Koashi,et al.  A distributed architecture for scalable quantum computation with realistically noisy devices , 2012, 1202.6588.

[101]  Fernando Pastawski,et al.  Unfolding the color code , 2015, 1503.02065.

[102]  Nikolas P. Breuckmann,et al.  PhD thesis: Homological Quantum Codes Beyond the Toric Code , 2018, 1802.01520.

[103]  John Preskill,et al.  Continuous Symmetries and Approximate Quantum Error Correction , 2019, Physical Review X.

[104]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[105]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[106]  Jonas T. Anderson Homological Stabilizer Codes. , 2011 .

[107]  B. Terhal,et al.  Hyperbolic and semi-hyperbolic surface codes for quantum storage , 2017, 1703.00590.

[108]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[109]  Héctor Bombín Structure of 2D Topological Stabilizer Codes , 2011 .

[111]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[112]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[113]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[114]  Barbara M. Terhal,et al.  Noise thresholds for the [4, 2, 2]-concatenated toric code , 2016, Quantum Inf. Comput..

[115]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[116]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[117]  Daniel Litinski,et al.  Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes , 2017, 1709.02318.

[118]  P. Sarvepalli,et al.  Decoding the three-dimensional toric codes and welded codes on cubic lattices , 2019, Physical Review A.

[119]  L. Pryadko,et al.  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .

[120]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[121]  Jean-Pierre Tillich,et al.  A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.

[122]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[123]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[124]  Stephen D. Bartlett,et al.  Symmetry-Protected Self-Correcting Quantum Memories , 2018, Physical Review X.

[125]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[126]  Austin G. Fowler,et al.  Graphical algorithms and threshold error rates for the 2d color code , 2009, Quantum Inf. Comput..

[127]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[128]  Earl T. Campbell,et al.  Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost , 2016, 1606.01904.

[129]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[130]  A. Fowler,et al.  Low overhead quantum computation using lattice surgery , 2018, 1808.06709.

[131]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[132]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[133]  Pradeep Kiran Sarvepalli,et al.  Projecting three-dimensional color codes onto three-dimensional toric codes , 2018, Physical Review A.

[134]  Earl T. Campbell,et al.  A theory of single-shot error correction for adversarial noise , 2018, Quantum Science and Technology.

[135]  John Preskill,et al.  Cellular-Automaton Decoders with Provable Thresholds for Topological Codes. , 2018, Physical review letters.

[136]  Barbara M. Terhal,et al.  Constructions and Noise Threshold of Hyperbolic Surface Codes , 2015, IEEE Transactions on Information Theory.

[137]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[138]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[139]  Fernando Pastawski,et al.  Quantum memories based on engineered dissipation , 2010, 1010.2901.

[140]  Zohar Nussinov,et al.  Autocorrelations and thermal fragility of anyonic loops in topologically quantum ordered systems , 2007, 0709.2717.

[141]  Aleksander Kubica,et al.  The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter , 2018 .

[142]  Sabrina Hirsch,et al.  Reflection Groups And Coxeter Groups , 2016 .

[143]  David Poulin,et al.  Fault-Tolerant Quantum Error Correction for non-Abelian Anyons , 2016, Communications in Mathematical Physics.

[144]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[145]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[146]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[147]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[148]  Earl T. Campbell,et al.  Cellular-automaton decoders for topological quantum memories , 2014, npj Quantum Information.

[149]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[150]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[151]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[152]  John Preskill,et al.  Sufficient condition on noise correlations for scalable quantum computing , 2012, Quantum Inf. Comput..

[153]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[154]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[155]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[156]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[157]  Nicolas Delfosse,et al.  Decoding color codes by projection onto surface codes , 2013, ArXiv.

[158]  Omar Fawzi,et al.  Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[159]  A. Fowler,et al.  Proof of finite surface code threshold for matching. , 2012, Physical review letters.

[160]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.