Algorithms for diversity and clustering in social networks through dot product graphs
暂无分享,去创建一个
Erik Jan van Leeuwen | Daniël Paulusma | Matthew Johnson | D. Paulusma | E. J. V. Leeuwen | Matthew Johnson
[1] L. J. Gray,et al. Nonnegative factorization of positive semidefinite nonnegative matrices , 1980 .
[2] C. Nickel. RANDOM DOT PRODUCT GRAPHS A MODEL FOR SOCIAL NETWORKS , 2008 .
[3] David Liben-Nowell,et al. The link-prediction problem for social networks , 2007 .
[4] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[5] Lada A. Adamic,et al. Friends and neighbors on the Web , 2003, Soc. Networks.
[6] Gregory Minton,et al. Dot Product Representations of Graphs , 2008 .
[7] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[8] M. McPherson,et al. Birds of a Feather: Homophily in Social Networks , 2001 .
[9] Ciro Cattuto,et al. Semantic Grounding of Tag Relatedness in Social Bookmarking Systems , 2008, SEMWEB.
[10] M E J Newman,et al. Identity and Search in Social Networks , 2002, Science.
[11] Erik Jan van Leeuwen,et al. Algorithms to Measure Diversity and Clustering in Social Networks through Dot Product Graphs , 2013, ISAAC.
[12] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[13] Edward R. Scheinerman,et al. Directed Random Dot Product Graphs , 2008, Internet Math..
[14] Ross J. Kang,et al. Sphere and Dot Product Representations of Graphs , 2012, Discrete & Computational Geometry.
[15] Tim Roughgarden,et al. Preventing Unraveling in Social Networks: The Anchored k-Core Problem , 2012, SIAM J. Discret. Math..
[16] Paul Erdös,et al. On random graphs, I , 1959 .
[17] László Lovász,et al. Dot Product Representations of Planar Graphs , 2011 .
[18] M. McPherson,et al. BIRDS OF A FEATHER: Homophily , 2001 .
[19] Carsten Thomassen. Embeddings of graphs , 1994, Discret. Math..
[20] H. Simon,et al. ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .
[21] Tim Roughgarden,et al. Preventing Unraveling in Social Networks: The Anchored k-Core Problem , 2015, SIAM J. Discret. Math..
[22] J. Reiterman,et al. Embeddings of graphs in euclidean spaces , 1989, Discret. Comput. Geom..
[23] N. Mahadev,et al. Threshold graphs and related topics , 1995 .
[24] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[25] Vojtech Rödl,et al. On embedding of graphs into euclidean spaces of small dimension , 1992, J. Comb. Theory, Ser. B.
[26] R. Breiger. The Duality of Persons and Groups , 1974 .
[27] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[28] Jeremy P. Spinrad,et al. Efficient graph representations , 2003, Fields Institute monographs.
[29] Edward R. Scheinerman,et al. Random Dot Product Graph Models for Social Networks , 2007, WAW.
[30] Martin Charles Golumbic,et al. Directed tolerance graphs , 2004 .
[31] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[32] Peter D. Hoff,et al. Latent Space Approaches to Social Network Analysis , 2002 .
[33] Santosh S. Vempala,et al. Latent Semantic Indexing , 2000, PODS 2000.
[34] T. Snijders. Statistical Models for Social Networks , 2011 .
[35] Edward R. Scheinerman,et al. Modeling graphs using dot product representations , 2010, Comput. Stat..
[36] Jon M. Kleinberg,et al. Feedback effects between similarity and social influence in online communities , 2008, KDD.
[37] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[38] Reinhard Diestel,et al. Graph Theory , 1997 .
[39] Jure Leskovec,et al. Multiplicative Attribute Graph Model of Real-World Networks , 2010, Internet Math..
[40] Ross J. Kang,et al. Sphere and Dot Product Representations of Graphs , 2012, Discret. Comput. Geom..
[41] Mark E. J. Newman,et al. The Structure and Function of Complex Networks , 2003, SIAM Rev..
[42] Gerard J. Chang,et al. Dot product dimensions of graphs , 2014, Discret. Appl. Math..
[43] Derek de Solla Price,et al. A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..
[44] Vojtech Rödl,et al. Geometrical embeddings of graphs , 1989, Discret. Math..
[45] László Lovász,et al. Dot Product Representations of Planar Graphs , 2010, Electron. J. Comb..
[46] M. A. Muñoz,et al. Scale-free networks from varying vertex intrinsic fitness. , 2002, Physical review letters.
[47] Edward R. Scheinerman,et al. Dot product representations of graphs , 1998, Discret. Math..
[48] Christos Faloutsos,et al. Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..
[49] Dieter Kratsch,et al. Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..
[50] Avi Wigderson,et al. Towards a Study of Low-Complexity Graphs , 2009, ICALP.
[51] Richard M. Karp,et al. Reducibility among combinatorial problems" in complexity of computer computations , 1972 .
[52] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.