Visualizations with statistical details: The 'ggstatsplot' approach

Graphical displays can reveal problems in a statistical model that might not be apparent from purely numerical summaries. Such visualizations can also be helpful for the reader to evaluate the validity of a model if it is reported in a scholarly publication or report. But, given the onerous costs involved, researchers often avoid preparing information-rich graphics and exploring several statistical approaches or tests available. The ggstatsplot package in the R programming language (R Core Team, 2021) provides a one-line syntax to enrich ggplot2based visualizations with the results from statistical analysis embedded in the visualization itself. In doing so, the package helps researchers adopt a rigorous, reliable, and robust data exploratory and reporting workflow.

[1]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[2]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[3]  Philip D. Waggoner,et al.  insight: A Unified Interface to Access Information from Model Objects in R , 2019, J. Open Source Softw..

[4]  J. Rachal,et al.  Publication Manual of the American Psychological Association, 4th Edition , 1995 .

[5]  Indrajeet Patil,et al.  Methods and Algorithms for Correlation Analysis in R , 2020, J. Open Source Softw..

[6]  Indrajeet Patil,et al.  Extracting, Computing and Exploring the Parameters of Statistical Models using R , 2020, J. Open Source Softw..

[7]  Mercer Jennifer Ann,et al.  PUBLICATION manual of the American Psychological Association. , 1952, Psychological bulletin.

[8]  Dominique Makowski,et al.  bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework , 2019, J. Open Source Softw..

[9]  Eric-Jan Wagenmakers,et al.  The JASP guidelines for conducting and reporting a Bayesian analysis , 2019, Psychonomic Bulletin & Review.

[10]  Indrajeet Patil,et al.  performance: An R Package for Assessment, Comparison and Testing of Statistical Models , 2021, J. Open Source Softw..

[11]  Daniel B. Carr,et al.  The Visual Display of Quantitative Information , 1987 .

[12]  Mattan S. Ben-Shachar,et al.  effectsize: Estimation of Effect Size Indices and Standardized Parameters , 2020, J. Open Source Softw..

[13]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[14]  Indrajeet Patil,et al.  statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details , 2021, J. Open Source Softw..

[15]  Peter Baumgartner,et al.  R – Data Science , 2017 .

[16]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[17]  E. Wagenmakers,et al.  The JASP guidelines for conducting and reporting a Bayesian analysis , 2020, Psychonomic bulletin & review.

[18]  Adam Weintrit,et al.  Methods and Algorithms , 2011 .

[19]  Kieran Healy Data Visualization: A Practical Introduction , 2018 .

[20]  Ulrike Grömping Data Visualization: Charts, Maps, and Interactive Graphics , 2021, J. Stat. Softw..