An improved generalized Newton method for absolute value equations

In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations $$Ax-|x|=b$$Ax-|x|=b when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation.

[1]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[2]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[3]  S. J. Chung NP-Completeness of the linear complementarity problem , 1989 .

[4]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[5]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.

[6]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[7]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[8]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..

[9]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[10]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[11]  Zheng-Hai Huang,et al.  A note on absolute value equations , 2010, Optim. Lett..

[12]  Lou Caccetta,et al.  A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..

[13]  Qiong Zhang,et al.  A generalized Newton method for absolute value equations associated with second order cones , 2011, J. Comput. Appl. Math..

[14]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2012, Optim. Lett..

[15]  Olvi L. Mangasarian,et al.  Absolute value equation solution via dual complementarity , 2012, Optimization Letters.

[16]  Davod Khojasteh Salkuyeh,et al.  The Picard–HSS iteration method for absolute value equations , 2014, Optim. Lett..

[17]  Jiri Rohn,et al.  An iterative method for solving absolute value equations and sufficient conditions for unique solvability , 2014, Optim. Lett..

[18]  Olvi L. Mangasarian Linear complementarity as absolute value equation solution , 2014, Optim. Lett..

[19]  S. Ketabchi,et al.  Minimum norm solution of the absolute value equations via simulated annealing algorithm , 2015 .

[20]  Vaithilingam Jeyakumar,et al.  Robust SOS-convex polynomial optimization problems: exact SDP relaxations , 2013, Optimization Letters.

[21]  Zhenghai Huang,et al.  The Sparsest Solution to the System of Absolute Value Equations , 2015 .

[22]  Olvi L. Mangasarian A hybrid algorithm for solving the absolute value equation , 2015, Optim. Lett..

[23]  Asif Iqbal,et al.  Levenberg-Marquardt method for solving systems of absolute value equations , 2015, J. Comput. Appl. Math..

[24]  Farhad Khaksar Haghani,et al.  On Generalized Traub’s Method for Absolute Value Equations , 2015, J. Optim. Theory Appl..

[25]  Peng Guo,et al.  On the Unique Solvability of the Absolute Value Equation , 2015, Journal of Optimization Theory and Applications.

[26]  Orizon Pereira Ferreira,et al.  On the global convergence of the inexact semi-smooth Newton method for absolute value equation , 2015, Comput. Optim. Appl..