Temperate rocky subtidal reef community reveals human impacts across the entire food web

Food webs as representations of who eats whom are at the core of community ecology. Incorporation of tools from network theory enables assessment of how complex systems respond to natural and human-induced stressors, revealing how harvesting may degrade the properties and resilience of food webs. We present a comprehensive, coastal marine food web that includes 147 taxa cooccurring on shallow subtidal reefs along the highly productive and exploited Humboldt Current System of central Chile. This food web has connectance of 0.06, link density of 1204 and mean chain length of 4.3. The fractions of intermediate (76%), omnivorous (49%) and cannibalistic (8%) nodes are slightly lower than those observed in other marine food webs. Of the 147 nodes, 34 are harvested. Links to harvested nodes represented 50 to 100% of all trophic links of non-harvested nodes, illustrating the great impact that fishery pressure can have on the food web. The food web was compartmentalized into 5 sub-webs with high representation of harvested taxa. This structure changes if the fishery node is removed. Similarity analyses identified groups of harvested species with non-harvested nodes, suggesting that these tropho-equivalents could be sentinel species for the community-wide impacts of coastal fisheries. We conclude that fishing effects can be transmitted throughout the food web, with no compartments completely unaffected by harvesting. It is urgent to establish monitoring programs for community-wide effects of fisheries and assess whether resilience of these highly productive subtidal food webs has al ready been compromised, thereby identifying essential nodes that require stronger fisheries regulation.

[1]  J. Castilla,et al.  The humboldt current system of northern and central chile : Oceanographic processes, ecological interactions and socioeconomic feedback , 2007 .

[2]  H. Lotze,et al.  Two centuries of multiple human impacts and successive changes in a North Atlantic food web , 2004 .

[3]  B. Menge,et al.  Keystone predation and interaction strength : Interactive effects of predators on their main prey , 1996 .

[4]  Lucas N Joppa,et al.  Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. , 2015, Ecology.

[5]  Marten Scheffer,et al.  When can positive interactions cause alternative stable states in ecosystems , 2016 .

[6]  Marta Coll,et al.  Food-web changes in the Adriatic Sea over the last three decades , 2009 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  F. P. Ojeda,et al.  Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of habitat complexity , 2001 .

[9]  Ebbe Kanneworff Life cycle, food, and growth of the amphipod Ampelisca macrocephala liljeborg from the Øresund , 1965 .

[10]  M. Thiel The zoogeography of algae‐associated peracarids along the Pacific coast of Chile , 2002 .

[11]  Francisco P. Chavez,et al.  A comparison of Eastern Boundary Upwelling Ecosystems , 2009 .

[12]  Neo D. Martinez,et al.  Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. , 2012, Ecology letters.

[13]  J. Castilla,et al.  Coastal marine communities: trends and perspectives from human-exclusion experiments. , 1999, Trends in ecology & evolution.

[14]  P. Yodzis,et al.  Must top predators be culled for the sake of fisheries? , 2001, Trends in ecology & evolution.

[15]  U. Jacob Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets , 2005 .

[16]  A. Decho Microbial biofilms in intertidal systems: an overview , 2000 .

[17]  Stéphane Legendre,et al.  Food-web aggregation, methodological and functional issues , 2013 .

[18]  Stuart J. Kininmonth,et al.  Integrating abundance and functional traits reveals new global hotspots of fish diversity , 2013, Nature.

[19]  Julien Martin,et al.  An Adaptive‐Management Framework for Optimal Control of Hiking Near Golden Eagle Nests in Denali National Park , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[20]  J. Barnard,et al.  Tube-building behavior in Grandidierella, and two species of Cerapus , 1991, Hydrobiologia.

[21]  H. Lotze,et al.  Marine microbenthic community structure regulated by nitrogen loading and grazing pressure , 2000 .

[22]  K. Bjorndal,et al.  Historical Overfishing and the Recent Collapse of Coastal Ecosystems , 2001, Science.

[23]  B. Menge,et al.  Species Diversity Gradients: Synthesis of the Roles of Predation, Competition, and Temporal Heterogeneity , 1976, The American Naturalist.

[24]  J. Levinton Stability and Trophic Structure in Deposit-Feeding and Suspension-Feeding Communities , 1972, The American Naturalist.

[25]  Neo D. Martinez,et al.  Limits to Trophic Levels and Omnivory in Complex Food Webs: Theory and Data , 2004, The American Naturalist.

[26]  Miriam Fernández,et al.  Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding , 2002 .

[27]  João Carlos Marques,et al.  A short-term laboratory and in situ sediment assay based on the postexposure feeding of the estuarine isopod Cyathura carinata. , 2014, Environmental research.

[28]  M. Ortiz,et al.  Early succession of micro-periphyton communities in kelp bed and barren ground ecological systems , 2015 .

[29]  K. Brokordt,et al.  Effect of the degree of autotomy on feeding, growth, and reproductive capacity in the multi-armed sea star Heliaster helianthus , 2008 .

[30]  M. Anderson Variations in biofilms colonizing artificial surfaces: seasonal effects and effects of grazers , 1995, Journal of the Marine Biological Association of the United Kingdom.

[31]  G. Edgar,et al.  Variation in reef fish and invertebrate communities with level of protection from fishing across the Eastern Tropical Pacific seascape , 2011 .

[32]  Daniel R. Brumbaugh,et al.  An index to assess the health and benefits of the global ocean , 2012, Nature.

[33]  Robert R. Christian,et al.  Organizing and understanding a winter's seagrass foodweb network through effective trophic levels , 1999 .

[34]  R. Levins,et al.  Identifying keystone trophic groups in benthic ecosystems: Implications for fisheries management , 2013 .

[35]  M. Thiel,et al.  Consequences of light reduction for anti-herbivore defense and bioactivity against mussels in four seaweed species from northern-central Chile , 2009 .

[36]  T. Pitcher,et al.  Towards sustainability in world fisheries , 2002, Nature.

[37]  S. Opitz,et al.  Trophic interactions in Caribbean coral reefs , 1996 .

[38]  O. Yu,et al.  Secondary production of the eusirid amphipod Pontogeneia rostrata Gurjanova, 1938 (Crustacea: Peracarida) on a sandy shore in Korea , 2011 .

[39]  P. Qian,et al.  The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina , 2004 .

[40]  Marta Coll,et al.  Recovery of marine animal populations and ecosystems. , 2011, Trends in ecology & evolution.

[41]  J. Kyomo Feeding patterns, habits and food storage in Pilumnus vespertilio (Brachyura: Xanthidae) , 1999 .

[42]  M. Thiel,et al.  Major consequences of minor damage: impacts of small grazers on fast-growing kelps , 2014, Oecologia.

[43]  M. Thiel,et al.  Algal-dwelling Eophliantidae (Amphipoda): description of a new species and key to the world species, with notes on their biogeography , 2009, Journal of the Marine Biological Association of the United Kingdom.

[44]  E. Canuel,et al.  Food Web Structure in a Chesapeake Bay Eelgrass Bed as Determined through Gut Contents and 13C and 15N Isotope Analysis , 2011 .

[45]  W. Stotz,et al.  FEEDING BEHAVIOR OF THE PORCELLANID CRAB ALLOPETROLISTHES SPINIFRONS, SYMBIONT OF THE SEA ANEMONE PHYMACTIS PAPILLOSA , 2006 .

[46]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[47]  Jordi Bascompte,et al.  Interaction strength combinations and the overfishing of a marine food web. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Peter C de Ruiter and Volkmar Wolters DYNAMIC FOOD WEBS: MULTISPECIES ASSEMBLAGES, ECOSYSTEM DEVELOPMENT, AND ENVIRONMENTAL CHANGE , 2005 .

[49]  A. Barausse,et al.  Trophic network model of the Northern Adriatic Sea: analysis of an exploited and eutrophic ecosystem. , 2009 .

[50]  Jason S. Link,et al.  Does food web theory work for marine ecosystems , 2002 .

[51]  Juan Carlos Castilla,et al.  More than One Bag for the World Fishery Crisis and Keys for Co-management Successes in Selected Artisanal Latin American Shellfisheries , 2005, Reviews in Fish Biology and Fisheries.

[52]  Nicholas K Dulvy,et al.  Biology of extinction risk in marine fishes , 2005, Proceedings of the Royal Society B: Biological Sciences.

[53]  P. Yodzis,et al.  Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem , 1998 .

[54]  Jeffrey S. Levinton,et al.  Ecology of Marine Deposit Feeders , 1989, Lecture Notes on Coastal and Estuarine Studies.

[55]  E. Sala The Past and Present Topology and Structure of Mediterranean Subtidal Rocky-shore Food Webs , 2004, Ecosystems.

[56]  Jennifer A. Dunne,et al.  Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean , 2011, Ecosystems.

[57]  R. Bustamante,et al.  Feeding ecology of the South American sea lion Otaria flavescens: food contents and food selectivity , 1985 .

[58]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[59]  N. Piaget,et al.  ¿ES POSIBLE CRIAR TIBURONES?: EL CASO DE LA PINTARROJA COMUN, SCHROEDERICHTHYS CHILENSIS (CHONDRICHTHYES, SCYLIORHINIDAE) , 2005 .

[60]  S. Neira,et al.  Community structure and trophic interactions in a coastal management and exploitation area for benthic resources in central Chile , 2016 .

[61]  R. Sepúlveda,et al.  Estrategias de forrajeo de Robsonella fontaniana (d'Orbigny, 1834) (Cephalopoda: Octopodidae) , 2009 .

[62]  Jordi Bascompte,et al.  The Structure of Plant-Animal Mutualistic Networks , 2006 .

[63]  M. Coll,et al.  Decadal changes in a NW Mediterranean Sea food web in relation to fishing exploitation , 2009 .

[64]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[65]  Boris Worm,et al.  Patterns and ecosystem consequences of shark declines in the ocean. , 2010, Ecology letters.

[66]  Á. Ciotti,et al.  Environmental and grazing influence on spatial variability of intertidal biofilm on subtropical rocky shores , 2011 .

[67]  Laura Airoldi,et al.  THE EFFECTS OF SEDIMENTATION ON ROCKY COAST ASSEMBLAGES , 2003 .

[68]  J. Cohen MARINE AND CONTINENTAL FOOD WEBS: THREE PARADOXES? , 1994 .

[69]  J. Castilla,et al.  Territorial User Rights for Fisheries as Ancillary Instruments for Marine Coastal Conservation in Chile , 2012, Conservation biology : the journal of the Society for Conservation Biology.

[70]  K. Sebens,et al.  Regional variation in fish predation intensity: a historical perspective in the Gulf of Maine , 1992, Oecologia.

[71]  Neo D. Martinez,et al.  Food webs: reconciling the structure and function of biodiversity. , 2012, Trends in ecology & evolution.

[72]  M. Thiel Reproductive biology of Limnoria chilensis: another boring peracarid species with extended parental care , 2003 .

[73]  P. Yodzis,et al.  DIFFUSE EFFECTS IN FOOD WEBS , 2000 .

[74]  Neo D. Martinez,et al.  Estimating trophic position in marine and estuarine food webs , 2012 .

[75]  L. Pardo,et al.  Crypsis in Paraxanthus barbiger (Decapoda: Brachyura): Mechanisms Against Visual Predators , 2008 .

[76]  P. Jumars,et al.  Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes , 2004, Oecologia.

[77]  M. Thiel,et al.  Host use pattern and life history of Liopetrolisthes mitra, a crab associate of the black sea urchin Tetrapygus niger , 2000, Journal of the Marine Biological Association of the United Kingdom.

[78]  G. Somero The physiology of global change: linking patterns to mechanisms. , 2012, Annual review of marine science.

[79]  O. Iribarne,et al.  Trophic relationships between a Patagonian gastropod and its epibiotic anemone revealed by using stable isotopes and direct observations , 2013 .

[80]  M. Thiel,et al.  Mating behaviour of male rock shrimp, Rhynchocinetes typus (Decapoda: Caridea): effect of recent mating history and predation risk , 2006, Animal Behaviour.

[81]  C. Bremec,et al.  Benthic survey of natural and artificial reefs off Mar del Plata, Argentina, southwestern Atlantic , 2011 .

[82]  M. Coll,et al.  Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978-2003 , 2008 .

[83]  P. Dayton,et al.  Population structure and foraging biology of the predaceous chilean asteroid Meyenaster gelatinosus and the escape biology of its prey , 1977 .

[84]  J. Castilla,et al.  Roles of experimental marine ecology in coastal management and conservation. , 2000, Journal of experimental marine biology and ecology.

[85]  P. Dayton,et al.  Ecology of Kelp Communities , 1985 .

[86]  P. Moore,et al.  A comparative study on the tubes and feeding behaviour of eight species of corophioid Amphipoda and their bearing on phylogenetic relationships within the Corophioidea , 1997 .

[87]  S. Park,et al.  Biofilm: A crucial factor affecting the settlement of seaweed on intertidal rocky surfaces , 2011 .

[88]  C. Moreno,et al.  Geographical differences in the feeding patterns of red rockfish (Sebastes capensis) along South American coasts , 2006 .

[89]  Richard B. Taylor,et al.  Herbivory in the gammarid amphipod Aora typica: relationships between consumption rates, performance and abundance across ten seaweed species , 2006 .

[90]  Jens O. Riede,et al.  Scaling of Food-Web Properties with Diversity and Complexity Across Ecosystems , 2010 .

[91]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[92]  Neo D. Martinez,et al.  How do complex food webs persist in nature , 2005 .

[93]  J. Vásquez Diversidad, Estructura y Funcionamiento de Ecosistemas Costeros Rocosos del Norte de Chile , 1998 .

[94]  M. Hay,et al.  CAN QUANTITY REPLACE QUALITY? FOOD CHOICE, COMPENSATORY FEEDING, AND FITNESS OF MARINE MESOGRAZERS , 2000 .

[95]  R. Ulanowicz,et al.  The Seasonal Dynamics of The Chesapeake Bay Ecosystem , 1989 .

[96]  J. Castilla,et al.  Marine Conservation in Chile: Historical Perspective, Lessons, and Challenges , 2005 .

[97]  J. Vásquez,et al.  Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery , 2008, Journal of Applied Phycology.

[98]  G. Försterra,et al.  A new species of sea anemone from Chile, Anemonia alicemartinae n. sp. (Cnidaria: Anthozoa). An invader or an indicator for environmental change in shallow water? , 2001 .

[99]  A. Buschmann Intertidal macroalgae as refuge and food for amphipoda in Central Chile , 1990 .

[100]  S. Bornholdt,et al.  When are networks truly modular , 2006, cond-mat/0606220.

[101]  Marten Scheffer,et al.  Navigating transformations in governance of Chilean marine coastal resources , 2010, Proceedings of the National Academy of Sciences.

[102]  A. Buschmann,et al.  Herbivore-kelp interactions in Chilean subtidal communities: a review , 1997 .

[103]  J. Harrington,et al.  Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community , 1979 .

[104]  Carsten F. Dormann,et al.  Ecological networks - foodwebs and beyond , 2009 .

[105]  Ulrich Brose,et al.  Food‐web connectance and predator interference dampen the paradox of enrichment , 2008 .

[106]  S. Hall,et al.  Food-web patterns : lessons from a species-rich web , 1991 .

[107]  A. Mougi,et al.  Diversity of Interaction Types and Ecological Community Stability , 2012, Science.

[108]  Jennifer A. Dunne,et al.  Network structure and robustness of marine food webs , 2004 .

[109]  T. Antezana,et al.  Diet selection of the Chilean stone crab Homalaspis plana , 1983 .

[110]  M. Simier,et al.  Diet diversity of jack and chub mackerels and ecosystem changes in the northern Humboldt Current system: A long-term study , 2015 .

[111]  C. Declerck THE EVOLUTION OF SUSPENSION FEEDING IN GASTROPODS , 1995 .

[112]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[113]  Matthias Wolff,et al.  Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies , 2002 .

[114]  J. Bascompte,et al.  Compartmentalization increases food-web persistence , 2011, Proceedings of the National Academy of Sciences.

[115]  J. Castilla,et al.  Spearfishing to depletion: evidence from temperate reef fishes in Chile. , 2010, Ecological applications : a publication of the Ecological Society of America.

[116]  M. Thiel,et al.  Herbivorous amphipods inhabit protective microhabitats within thalli of giant kelp Macrocystis pyrifera , 2012 .

[117]  Franck Picard,et al.  High-quality sequence clustering guided by network topology and multiple alignment likelihood , 2012, Bioinform..

[118]  Lawrence N. Hudson,et al.  Cheddar: analysis and visualisation of ecological communities in R , 2013 .

[119]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[120]  Neo D. Martinez Effects of resolution on food web structure , 1993 .

[121]  Lara A Ferry,et al.  Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile , 2012 .

[122]  P. Moore,et al.  Macrofaunal involvement in the sublittoral decay of kelp debris: the polychaete Platynereis dumerilii (Audouin and Milne-Edwards) (Annelida: Polychaeta) , 1985 .

[123]  S. Brawley,et al.  STUDIES OF MESOHERBIVORY IN AQUARIA AND IN AN UNBARRICADED MARICULTURE FARM ON THE CHINESE COAST 1 , 1987 .

[124]  A. Pérez‐Matus,et al.  Community structure of temperate reef fishes in kelp-dominated subtidal habitats of northern Chile , 2007 .

[125]  M. Lorenti,et al.  Isopod assemblages in the Straits of Magellan: structural and functional aspects , 1997, Polar Biology.

[126]  Scales of detection and escape of the sea urchin Tetrapygus niger in interactions with the predatory sun star Heliaster helianthus , 2011 .

[127]  F. P. Ojeda,et al.  Subtidal Kelp-Associated Communities off the Temperate Chilean Coast , 2008 .

[128]  R. Bustamante,et al.  The dependence of intertidal consumers on kelp-derived organic matter on the west coast of South Africa , 1996 .

[129]  P. Camus,et al.  A trophic characterization of intertidal consumers on Chilean rocky shores , 2013 .

[130]  K. Mengersen,et al.  Eliciting Expert Knowledge in Conservation Science , 2012, Conservation biology : the journal of the Society for Conservation Biology.

[131]  E. J. Emparanza Patterns of distribution of dominant porcelain crabs (Decapoda: Porcellanidae) under boulders in the intertidal of northern Chile , 2007, Journal of the Marine Biological Association of the United Kingdom.

[132]  J. Castilla,et al.  Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey , 2003 .

[133]  M. Thiel,et al.  Demography and feeding behavior of the kelp crab Taliepus marginatus in subtidal habitats dominated by the kelps Macrocystis pyrifera or Lessonia trabeculata , 2013 .

[134]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[135]  J. Stachowicz,et al.  Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes , 2006 .

[136]  Neo D. Martinez,et al.  Simple prediction of interaction strengths in complex food webs , 2009, Proceedings of the National Academy of Sciences.

[137]  Daniel B. Stouffer,et al.  Nestedness versus modularity in ecological networks: two sides of the same coin? , 2010, The Journal of animal ecology.

[138]  R. Steneck,et al.  Feeding capabilities and limitation of herbivorous molluscs: A functional group approach , 1982 .

[139]  Y. Shirayama,et al.  Feeding ecology of three amphipod species Synchelidium lenorostralum, S. trioostegitum and Gitanopsis japonica in the surf zone of a sandy shore , 2003 .

[140]  B. Broitman,et al.  Differential effects of grazer species on periphyton of a temperate rocky shore , 2013 .

[141]  F. Acuña,et al.  Ecology Of Intertidal Sea Anemones. Density, Dispersion And Autoecology Of Phymactis Clematis Dana, 1849 (Anthozoa:Actiniaria) , 1995 .

[142]  K. Fauchald The diet of worms : A study of polychaete feeding guilds , 1979 .

[143]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[144]  J. Castilla,et al.  Add-on conservation benefits of marine territorial user rights fishery policies in central Chile. , 2008, Ecological applications : a publication of the Ecological Society of America.

[145]  R. Scheibling,et al.  Production and fate of kelp detritus , 2012 .

[146]  Marco Ortiz,et al.  Mass balanced and dynamic simulations of trophic models of kelp ecosystems near the Mejillones Peninsula of northern Chile (SE Pacific) : Comparative network structure and assessment of harvest strategies , 2008 .

[147]  F. P. Ojeda,et al.  Cephalic anatomy of the herbivorous fish Girella laevifrons (Osteichthyes: Kyphosidae): mechanical considerations of its trophic function , 1990 .

[148]  M. Thiel,et al.  Effects of predation and habitat structure on the abundance and population structure of the rock shrimp Rhynchocinetes typus (Caridea) on temperate rocky reefs , 2012, Marine biology.

[149]  H. Olff,et al.  How habitat-modifying organisms structure the food web of two coastal ecosystems , 2016, Proceedings of the Royal Society B: Biological Sciences.

[150]  Jordi Bascompte,et al.  Habitat loss and the structure of plant-animal mutualistic networks. , 2006, Ecology letters.

[151]  L. Ebensperger,et al.  The influence of wave exposure on the foraging activity of marine otter, Lontra felina (Molina, 1782) (Carnivora: Mustelidae) in northern Chile , 2007, Journal of Ethology.

[152]  J. M. Tierno de Figueroa,et al.  What do caprellids (Crustacea: Amphipoda) feed on? , 2009 .

[153]  M. Horn,et al.  Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile , 2006 .

[154]  M. Wolff,et al.  Feeding behaviour of the asteroid Meyenaster gelatinosus in response to changes in abundance of the scallop Argopecten purpuratus in northern Chile , 2003 .

[155]  F. P. Ojeda,et al.  Feeding guild structure of a rocky intertidal fish assemblage in central Chile , 1997, Environmental Biology of Fishes.

[156]  M. Thiel,et al.  Seasonal variation in epifaunal communities associated with giant kelp (Macrocystis pyrifera) at an upwelling‐dominated site , 2017 .