Serre's reduction of linear partial differential systems with holonomic adjoints

Given a linear functional system (e.g., an ordinary/partial differential system, a differential time-delay system, a difference system), Serre's reduction aims at finding an equivalent linear functional system which contains fewer equations and fewer unknowns. The purpose of this paper is to study Serre's reduction of underdetermined linear systems of partial differential equations with either polynomial, formal power series or locally convergent power series coefficients, and with holonomic adjoints in the sense of algebraic analysis. We prove that these linear partial differential systems can be defined by means of only one linear partial differential equation. In the case of polynomial coefficients, we give an algorithm to compute the corresponding equation.

[1]  Eva Zerz,et al.  An algebraic analysis approach to linear time-varying systems , 2006, IMA J. Math. Control. Inf..

[2]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[3]  Pierre Rouchon,et al.  Some examples of linear systems with delays , 1997 .

[4]  A. Quadrat Controllability and differential flatness of linear analytic ordinary differential systems , 2010 .

[5]  Viktor Levandovskyy,et al.  Computing diagonal form and Jacobson normal form of a matrix using Gröbner bases , 2010, J. Symb. Comput..

[6]  Georg Regensburger,et al.  Gröbner bases in control theory and signal processing , 2007 .

[7]  S. Żak,et al.  Smith forms over R[z_{1},z_{2}] , 1983 .

[8]  A. Quadrat,et al.  OreModules: A Symbolic Package for the Study of Multidimensional Linear Systems , 2007 .

[9]  Alban Quadrat,et al.  Serre’s Reduction of Linear Functional Systems , 2010, Math. Comput. Sci..

[10]  Frances Thorndike Cope Formal Solutions of Irregular Linear Differential Equations. Part II , 1934 .

[11]  B. Korenblum,et al.  Cyclic vectors in , 1988 .

[12]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[13]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[14]  B. Malgrange,et al.  Systèmes différentiels à coefficients constants , 1964 .

[15]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[16]  S. C. Coutinho A primer of algebraic D-modules , 1995 .

[17]  T. Cluzeau,et al.  Factoring and decomposing a class of linear functional systems , 2008 .

[18]  A. Quadrat An introduction to constructive algebraic analysis and its applications , 2010 .

[19]  A. Quadrat,et al.  Applications of the Quillen-Suslin theorem to multidimensional systems theory , 2007 .

[20]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[21]  Jean-Pierre Serre,et al.  Sur les modules projectifs , 1961 .

[23]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[24]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[25]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[26]  Anton Leykin,et al.  Algorithmic proofs of two theorems of Stafford , 2002, J. Symb. Comput..

[27]  A. Manitius Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation , 1984 .

[28]  Eduardo D. Sontag,et al.  Deterministic Finite Dimensional Systems , 1988 .

[29]  C. Sabbah,et al.  D-modules cohérents et holonomes , 1993 .

[30]  Li Guo Differential algebra and related topics : Newark Campus of Rutgers, The State University of New Jersey, 2-3 November 2000 , 2002 .

[31]  W. Wonham,et al.  Topics in mathematical system theory , 1972, IEEE Transactions on Automatic Control.

[32]  Alban Quadrat,et al.  Algebraic analysis of linear multidimensional control systems , 1999 .

[33]  Alban Quadrat,et al.  Effective algorithms for parametrizing linear control systems over Ore algebras , 2005, Applicable Algebra in Engineering, Communication and Computing.

[34]  Jean-François Pommaret,et al.  Localization and parametrization of linear multidimensional control systems , 1999 .

[35]  Alban Quadrat,et al.  Computation of bases of free modules over the Weyl algebras , 2007, J. Symb. Comput..

[36]  M. S. Boudellioua Further results on Serre ’ s reduction of multidimensional linear systems , 2010 .