Stress intensity factor computation using the method of fundamental solutions: mixed‐mode problems

The method of fundamental solutions is applied to the computation of stress intensity factors in linear elastic fracture mechanics. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity and the leading terms for the displacement near the crack tip. Two algorithms are developed, one using a single domain and one using domain decomposition. Numerical results are given. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  B. Gross,et al.  Stress intensity factors for crackline-loaded edge-crack specimens. , 1967 .

[2]  Andreas Poullikkas,et al.  Stress intensity factor computation using the method of fundamental solutions , 2006 .

[3]  W. E. Lorensen,et al.  The collapsed cubic isoparametric element as a ingular element for crack probblems , 1978 .

[4]  Anthony R. Ingraffea,et al.  Two‐dimensional stress intensity factor computations using the boundary element method , 1981 .

[5]  Surendra P. Shah,et al.  Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials , 1995 .

[6]  Satya N. Atluri,et al.  Computational methods in the mechanics of fracture , 1987, International Journal of Fracture.

[7]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[8]  John Berger,et al.  Boundary integral equation formulation for Interface cracks in anisotropic materials , 1997 .

[9]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[10]  On the computation of two-dimensional stress intensity factors using the boundary element method , 1988 .

[11]  D. Rooke,et al.  Numerical Fracture Mechanics , 1990 .

[12]  Carlos Alberto Brebbia,et al.  Progress in Boundary Element Methods , 1981 .

[13]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[14]  John M. Cimbala,et al.  Fluid Mechanics: Fundamentals and Applications , 2004 .

[15]  Frank J. Rizzo,et al.  On boundary integral equations for crack problems , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[17]  Graeme Fairweather,et al.  The method of fundamental solutions for scattering and radiation problems , 2003 .

[18]  Xin Li,et al.  Trefftz Methods for Time Dependent Partial Differential Equations , 2004 .

[19]  Andreas Karageorghis,et al.  The method of fundamental solutions for layered elastic materials , 2001 .

[20]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[21]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[22]  R. T. Fenner A force field superposition approach to plane elastic stress and strain analysis , 2001 .