Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas

Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry. This article is a review of these developments.

[1]  Mark F. Adams,et al.  Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics , 2010, J. Comput. Phys..

[2]  D. A. Knoll,et al.  A 2D high-ß Hall MHD implicit nonlinear solver , 2003 .

[3]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[4]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[5]  Paul T. Lin,et al.  Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..

[6]  James C. Wiley,et al.  Toroidal studies of sawtooth oscillations in tokamaks , 1987 .

[7]  J. Breslau,et al.  Some properties of the M3D-C1 form of the three-dimensional magnetohydrodynamics equations , 2009 .

[8]  Sibylle Günter,et al.  Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..

[9]  Edmund Taylor Whittaker,et al.  On the partial differential equations of mathematical physics , 1903 .

[10]  Beth A. Wingate,et al.  The Maximum Allowable Time Step for the Shallow Water α Model and Its Relation to Time-Implicit Differencing , 2004 .

[11]  A. Aydemir,et al.  An implicit algorithm for compressible three-dimensional magnetohydrodynamic calculations , 1985 .

[12]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[13]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[14]  D. Laveder,et al.  On a semi-implicit scheme for spectral simulations of dispersive magnetohydrodynamics , 2009, Comput. Phys. Commun..

[15]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[16]  Douglas S. Harned,et al.  Accurate semi-implicit treatment of the hall effect in magnetohydrodynamic computations , 1989 .

[17]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[18]  J. Manickam,et al.  Three‐dimensional stellarator equilibrium as an Ohmic steady state , 1986 .

[19]  E. A. Frieman,et al.  An energy principle for hydromagnetic stability problems , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Nuno F. Loureiro,et al.  An iterative semi-implicit scheme with robust damping , 2007, J. Comput. Phys..

[21]  S. C. Jardin,et al.  Numerical calculations demonstrating complete stabilization of the ideal magnetohydrodynamic resistive wall mode by longitudinal flow , 2009 .

[22]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[23]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[24]  Stephen C. Jardin,et al.  A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions , 2007, J. Comput. Phys..

[25]  J. Breslau,et al.  Wall forces produced during ITER disruptions , 2010 .

[26]  Edward J Caramana Derivation of implicit difference schemes by the method of differential approximation , 1991 .

[27]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[28]  John L. Johnson,et al.  Resistive instabilities in general toroidal plasma configurations , 1975 .

[29]  K Lerbinger,et al.  A new semi-implicit method for MHD computations , 1991 .

[30]  Linda E. Sugiyama,et al.  A nonlinear two-fluid model for toroidal plasmas , 2000 .

[31]  Pierre Ramet,et al.  Non-linear MHD simulations of edge localized modes (ELMs) , 2009 .

[32]  H. R. Strauss,et al.  Magnetic X-points, edge localized modes, and stochasticitya) , 2010 .

[33]  Carol S. Woodward,et al.  A fully implicit numerical method for single-fluid resistive magnetohydrodynamics , 2006, J. Comput. Phys..

[34]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[35]  David E. Keyes,et al.  Additive Schwarz-based fully coupled implicit methods for resistive Hall magnetohydrodynamic problems , 2007, J. Comput. Phys..

[36]  Dalton D. Schnack,et al.  Semi-implicit magnetohydrodynamic calculations , 1987 .

[37]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[38]  A. A. Amsden,et al.  Numerical calculation of almost incompressible flow , 1968 .

[39]  Stephen C. Jardin,et al.  Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..

[40]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[41]  Dalton D. Schnack,et al.  Semi-implicit method for long time scale magnetohydrodynamic computations in three dimensions , 1986 .

[42]  Carol S. Woodward,et al.  Operator-Based Preconditioning of Stiff Hyperbolic Systems , 2010, SIAM J. Sci. Comput..

[43]  John L. Johnson,et al.  Resistive instabilities in a diffuse linear pinch , 1966 .

[44]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[45]  Hinrich Lütjens,et al.  XTOR-2F: A fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks , 2010, J. Comput. Phys..

[46]  J. Breslau,et al.  A parallel algorithm for global magnetic reconnection studies , 2003 .

[47]  Wolfgang Kerner,et al.  Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation☆ , 1985 .

[48]  Hinrich Lütjens,et al.  The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas , 2008, J. Comput. Phys..

[49]  Steven J. Plimpton,et al.  The NIMROD code: a new approach to numerical plasma physics , 1999 .

[50]  J. Linker,et al.  Stability of Algorithms for Waves with Large Flows , 1999 .

[51]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[52]  S. C. Jardin,et al.  Nonlinear evolution of the resistive interchange mode in the cylindrical spheromak , 1984 .

[53]  Stephen C. Jardin,et al.  A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .

[54]  H. R. Strauss,et al.  Dynamics of high tokamaks , 1977 .

[55]  R. Schmalz,et al.  Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects , 1981 .

[56]  Uri Shumlak,et al.  An Implicit Scheme for Nonideal Magnetohydrodynamics , 1997 .

[57]  Woo Jin Park,et al.  Sawtooth oscillations in tokamaks , 1990 .

[58]  John Killeen,et al.  Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations , 1973 .

[59]  L A Charlton,et al.  Compressible linear and nonlinear resistive MHD calculations in toroidal geometry , 1990 .

[60]  Bondeson,et al.  Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.

[61]  H. R. Strauss,et al.  Numerical studies of nonlinear evolution of kink modes in tokamaks , 1976 .

[62]  H. R. Strauss,et al.  Finite-aspect-ratio MHD equations for tokamaks , 1983 .

[63]  A. H. Glasser,et al.  The SEL macroscopic modeling code , 2004, Comput. Phys. Commun..

[64]  M. S. Chance,et al.  Study of the MHD spectrum of an elliptic plasma column , 1977 .

[65]  Luis Chacon,et al.  An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .

[66]  A. Y. Aydemir An intrinsic source of radial electric field and edge flows in tokamaks , 2009 .

[67]  D. A. Monticello,et al.  Reduced equations for finite beta tearing modes in tokamaks , 1985 .

[68]  Scott Kruger,et al.  Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code , 2010 .

[69]  A. D. Turnbull,et al.  Nonlinear three-dimensional self-consistent simulations of negative central shear discharges in the DIII-D tokamak , 2001 .

[70]  Uri Shumlak,et al.  Spectral element spatial discretization error in solving highly anisotropic heat conduction equation , 2010, Comput. Phys. Commun..

[71]  E K Maschke,et al.  A representation of toroidal MHD in terms of stream functions and potentials , 1989 .

[72]  Scott Kruger,et al.  Nonlinear extended magnetohydrodynamics simulation using high-order finite elements , 2005 .

[73]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[74]  Olivier Czarny,et al.  Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..

[75]  H. R. Hicks,et al.  3D nonlinear MHD calculations using implicit and explicit time integration schemes , 1986 .

[76]  Rainer Grauer,et al.  A semi-implicit Hall-MHD solver using whistler wave preconditioning , 2007, Comput. Phys. Commun..

[77]  P. B. Snyder,et al.  Ideal and resistive edge stability calculations with M3D-C1 , 2010 .

[78]  Scott Kruger,et al.  Computational modeling of fully ionized magnetized plasmas using the fluid approximation , 2005 .

[79]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[80]  Guo-Yong Fu,et al.  Implementation of an implicit shear Alfvén operator in the M3D code , 2010, Comput. Phys. Commun..

[81]  John L. Johnson,et al.  Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks , 1977 .

[82]  H. R. Strauss Dynamics of high. beta. tokamaks , 1977 .

[83]  J. Rappaz,et al.  Finite element methods in linear ideal magnetohydrodynamics , 1985 .

[84]  C. H. Finan,et al.  Solution of the time-dependent, three-dimensional resistive magnetohydrodynamic equations , 1981 .

[85]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[86]  Carl R. Sovinec,et al.  Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling , 2010, J. Comput. Phys..

[87]  A. Robert,et al.  A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models , 1985 .