Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas
暂无分享,去创建一个
[1] Mark F. Adams,et al. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics , 2010, J. Comput. Phys..
[2] D. A. Knoll,et al. A 2D high-ß Hall MHD implicit nonlinear solver , 2003 .
[3] A. Robert,et al. An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .
[4] P. B. Snyder,et al. BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..
[5] Paul T. Lin,et al. Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..
[6] James C. Wiley,et al. Toroidal studies of sawtooth oscillations in tokamaks , 1987 .
[7] J. Breslau,et al. Some properties of the M3D-C1 form of the three-dimensional magnetohydrodynamics equations , 2009 .
[8] Sibylle Günter,et al. Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..
[9] Edmund Taylor Whittaker,et al. On the partial differential equations of mathematical physics , 1903 .
[10] Beth A. Wingate,et al. The Maximum Allowable Time Step for the Shallow Water α Model and Its Relation to Time-Implicit Differencing , 2004 .
[11] A. Aydemir,et al. An implicit algorithm for compressible three-dimensional magnetohydrodynamic calculations , 1985 .
[12] E. T. WHITTAKER,et al. Partial Differential Equations of Mathematical Physics , 1932, Nature.
[13] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[14] D. Laveder,et al. On a semi-implicit scheme for spectral simulations of dispersive magnetohydrodynamics , 2009, Comput. Phys. Commun..
[15] C. Angelopoulos. High resolution schemes for hyperbolic conservation laws , 1992 .
[16] Douglas S. Harned,et al. Accurate semi-implicit treatment of the hall effect in magnetohydrodynamic computations , 1989 .
[17] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[18] J. Manickam,et al. Three‐dimensional stellarator equilibrium as an Ohmic steady state , 1986 .
[19] E. A. Frieman,et al. An energy principle for hydromagnetic stability problems , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] Nuno F. Loureiro,et al. An iterative semi-implicit scheme with robust damping , 2007, J. Comput. Phys..
[21] S. C. Jardin,et al. Numerical calculations demonstrating complete stabilization of the ideal magnetohydrodynamic resistive wall mode by longitudinal flow , 2009 .
[22] Paul H. Rutherford,et al. Nonlinear growth of the tearing mode , 1973 .
[23] A. Jameson,et al. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .
[24] Stephen C. Jardin,et al. A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions , 2007, J. Comput. Phys..
[25] J. Breslau,et al. Wall forces produced during ITER disruptions , 2010 .
[26] Edward J Caramana. Derivation of implicit difference schemes by the method of differential approximation , 1991 .
[27] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[28] John L. Johnson,et al. Resistive instabilities in general toroidal plasma configurations , 1975 .
[29] K Lerbinger,et al. A new semi-implicit method for MHD computations , 1991 .
[30] Linda E. Sugiyama,et al. A nonlinear two-fluid model for toroidal plasmas , 2000 .
[31] Pierre Ramet,et al. Non-linear MHD simulations of edge localized modes (ELMs) , 2009 .
[32] H. R. Strauss,et al. Magnetic X-points, edge localized modes, and stochasticitya) , 2010 .
[33] Carol S. Woodward,et al. A fully implicit numerical method for single-fluid resistive magnetohydrodynamics , 2006, J. Comput. Phys..
[34] Darryl D. Holm. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.
[35] David E. Keyes,et al. Additive Schwarz-based fully coupled implicit methods for resistive Hall magnetohydrodynamic problems , 2007, J. Comput. Phys..
[36] Dalton D. Schnack,et al. Semi-implicit magnetohydrodynamic calculations , 1987 .
[37] Homer F. Walker,et al. NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..
[38] A. A. Amsden,et al. Numerical calculation of almost incompressible flow , 1968 .
[39] Stephen C. Jardin,et al. Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..
[40] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[41] Dalton D. Schnack,et al. Semi-implicit method for long time scale magnetohydrodynamic computations in three dimensions , 1986 .
[42] Carol S. Woodward,et al. Operator-Based Preconditioning of Stiff Hyperbolic Systems , 2010, SIAM J. Sci. Comput..
[43] John L. Johnson,et al. Resistive instabilities in a diffuse linear pinch , 1966 .
[44] W. Park,et al. Plasma simulation studies using multilevel physics models , 1999 .
[45] Hinrich Lütjens,et al. XTOR-2F: A fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks , 2010, J. Comput. Phys..
[46] J. Breslau,et al. A parallel algorithm for global magnetic reconnection studies , 2003 .
[47] Wolfgang Kerner,et al. Semi-implicit method for three-dimensional compressible magnetohydrodynamic simulation☆ , 1985 .
[48] Hinrich Lütjens,et al. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas , 2008, J. Comput. Phys..
[49] Steven J. Plimpton,et al. The NIMROD code: a new approach to numerical plasma physics , 1999 .
[50] J. Linker,et al. Stability of Algorithms for Waves with Large Flows , 1999 .
[51] H. R. Strauss,et al. Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .
[52] S. C. Jardin,et al. Nonlinear evolution of the resistive interchange mode in the cylindrical spheromak , 1984 .
[53] Stephen C. Jardin,et al. A triangular finite element with first-derivative continuity applied to fusion MHD applications , 2004 .
[54] H. R. Strauss,et al. Dynamics of high tokamaks , 1977 .
[55] R. Schmalz,et al. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects , 1981 .
[56] Uri Shumlak,et al. An Implicit Scheme for Nonideal Magnetohydrodynamics , 1997 .
[57] Woo Jin Park,et al. Sawtooth oscillations in tokamaks , 1990 .
[58] John Killeen,et al. Alternating direction implicit techniques for two-dimensional magnetohydrodynamic calculations , 1973 .
[59] L A Charlton,et al. Compressible linear and nonlinear resistive MHD calculations in toroidal geometry , 1990 .
[60] Bondeson,et al. Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.
[61] H. R. Strauss,et al. Numerical studies of nonlinear evolution of kink modes in tokamaks , 1976 .
[62] H. R. Strauss,et al. Finite-aspect-ratio MHD equations for tokamaks , 1983 .
[63] A. H. Glasser,et al. The SEL macroscopic modeling code , 2004, Comput. Phys. Commun..
[64] M. S. Chance,et al. Study of the MHD spectrum of an elliptic plasma column , 1977 .
[65] Luis Chacon,et al. An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .
[66] A. Y. Aydemir. An intrinsic source of radial electric field and edge flows in tokamaks , 2009 .
[67] D. A. Monticello,et al. Reduced equations for finite beta tearing modes in tokamaks , 1985 .
[68] Scott Kruger,et al. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code , 2010 .
[69] A. D. Turnbull,et al. Nonlinear three-dimensional self-consistent simulations of negative central shear discharges in the DIII-D tokamak , 2001 .
[70] Uri Shumlak,et al. Spectral element spatial discretization error in solving highly anisotropic heat conduction equation , 2010, Comput. Phys. Commun..
[71] E K Maschke,et al. A representation of toroidal MHD in terms of stream functions and potentials , 1989 .
[72] Scott Kruger,et al. Nonlinear extended magnetohydrodynamics simulation using high-order finite elements , 2005 .
[73] R. F. Warming,et al. The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .
[74] Olivier Czarny,et al. Bézier surfaces and finite elements for MHD simulations , 2008, J. Comput. Phys..
[75] H. R. Hicks,et al. 3D nonlinear MHD calculations using implicit and explicit time integration schemes , 1986 .
[76] Rainer Grauer,et al. A semi-implicit Hall-MHD solver using whistler wave preconditioning , 2007, Comput. Phys. Commun..
[77] P. B. Snyder,et al. Ideal and resistive edge stability calculations with M3D-C1 , 2010 .
[78] Scott Kruger,et al. Computational modeling of fully ionized magnetized plasmas using the fluid approximation , 2005 .
[79] Sibylle Günter,et al. Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .
[80] Guo-Yong Fu,et al. Implementation of an implicit shear Alfvén operator in the M3D code , 2010, Comput. Phys. Commun..
[81] John L. Johnson,et al. Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks , 1977 .
[82] H. R. Strauss. Dynamics of high. beta. tokamaks , 1977 .
[83] J. Rappaz,et al. Finite element methods in linear ideal magnetohydrodynamics , 1985 .
[84] C. H. Finan,et al. Solution of the time-dependent, three-dimensional resistive magnetohydrodynamic equations , 1981 .
[85] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[86] Carl R. Sovinec,et al. Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling , 2010, J. Comput. Phys..
[87] A. Robert,et al. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models , 1985 .