TRANSLATIONAL SPECTROSCOPY STUDIES OF THE PHOTODISSOCIATION DYNAMICS OF O-4

An investigation of the photodissociation dynamics of the dimer anion O−4 at 523.6, 349.0, and 261.8 nm is reported. Product translational energy and angular distributions have been obtained using photofragment translational spectroscopy in a fast ion beam. At all wavelengths photodissociation (O−4+hν→O2+O−2) is observed to proceed via a rapid parallel electronic transition, with the photofragment angular distribution strongly peaked along the laser electric vector. The lowest energy photodissociation channel produces O2(a1Δg) and ground state O−2(X2Πg), indicating that O−4 is a doublet anion. The partitioning of energy in the dissociation reveals a complicated wavelength dependence.

[1]  Garner,et al.  Photoelectron-Photofragment Angular Correlation and Energy Partitioning in Dissociative Photodetachment. , 1996, Physical review letters.

[2]  M. C. Garner,et al.  Photodissociation dynamics of O3− at 523 nm , 1996 .

[3]  C. Sherwood,et al.  PHOTOELECTRON-NEUTRAL-NEUTRAL COINCIDENCE STUDIES OF DISSOCIATIVE PHOTODETACHMENT , 1995 .

[4]  C. Sherwood,et al.  FAST-ION-BEAM PHOTOELECTRON SPECTROMETER , 1995 .

[5]  C. Sherwood,et al.  Energy and angular distributions in dissociative photodetachment of O 4 , 1995 .

[6]  A. Tian,et al.  Electric field dependence of the diabatic potential energy surface for gas-phase electron transfer O2O2− → O2−O2 , 1995 .

[7]  Marvin Johnson,et al.  Observation of the A 2Πu←X 2Πg dissociative transition in isolated O2− using mass‐selected photofragmentation spectroscopy , 1993 .

[8]  D. Neumark,et al.  Photodissociation dynamics of the N3 radical , 1993 .

[9]  Marvin Johnson,et al.  Nascent vibrational distribution of the O−2 product ion in the photodissociation of (O2)−n, n = 2–4 , 1992 .

[10]  Marvin Johnson,et al.  Photoabsorption of negative cluster ions near the electron detachment threshold: A study of the (O2)−n system , 1990 .

[11]  P. Houston,et al.  Photodissociation dynamics of acetone at 193 nm: Photofragment internal and translational energy distributions , 1989 .

[12]  J. Beijersbergen,et al.  Transition states of excited polyatomic neutrals studied by their kinetic energy release: cyclohexane , 1989 .

[13]  M. Jacox,et al.  The vibrational spectra of molecular ions isolated in solid neon. II. O+4 and O−4 , 1989 .

[14]  L. Manceron,et al.  Reinvestigation of the infrared spectrum of the tetroxide anion in solid argon: structural implications , 1989 .

[15]  J. Maier Ion and Cluster Ion Spectroscopy and Structure , 1989 .

[16]  J. I. Brauman,et al.  Photodissociation spectroscopy of the negative ion dimer of toluquinone , 1987 .

[17]  K. Morokuma,et al.  An ab initio MO study on electron transfer in gas-phase hydrated clusters: O2-(H2O)n + O2 .fwdarw. O2 + O2-(H2O)n (n = 0, 1, and 2) , 1987 .

[18]  Marvin Johnson,et al.  Demonstration of a pulsed photoelectron spectrometer on mass-selected negative ions: O−, O2−, and O4− , 1986 .

[19]  Hyun‐Sook Kim,et al.  Photodissociation dynamics of negative ion clusters: (SO2)−2 , 1986 .

[20]  J. Kohl,et al.  Fast beams apparatus for the study of photodissociation processes , 1986 .

[21]  Andersen,et al.  Laser photodetachment measurement of the electron affinity of atomic oxygen. , 1985, Physical review. A, General physics.

[22]  D. Herschbach,et al.  Electron spin resonance spectra of matrix-isolated alkali tetroxide molecules , 1983 .

[23]  J. Los,et al.  Time and position‐sensitive detector for dissociative processes in fast beams , 1982 .

[24]  J. Simons,et al.  Analysis of the ’’charge resonance’’ transition in anthracene dimer anion , 1980 .

[25]  Gregory P Smith,et al.  Photodissociation and photodetachment of molecular negative ions. VI. Ions in O2/CH4/H2O mixtures from 3500 to 8600 Å , 1979 .

[26]  J. R. Peterson,et al.  Photodissociation and photodetachment of molecular negative ions. V. Atmospheric ions from 7000 to 8400 Å , 1978 .

[27]  J. R. Peterson,et al.  Photodissociation and photodetachment of molecular negative ions. III. Ions formed in CO2/O2/H2O mixtures , 1976 .

[28]  J. R. Peterson,et al.  Photodissociation and photodetachment of molecular negative ions. II. Ions formed in oxygen , 1975 .

[29]  R. Bersohn,et al.  Theory of the angular distribution of molecular photofragments , 1974 .

[30]  J. Bakker A beam-modulated time-of-flight mass spectrometer. II. Experimental work , 1974 .

[31]  R. Celotta,et al.  Molecular Photodetachment Spectrometry. II. The Electron Affinity of O2 and the Structure of O2 , 1972 .

[32]  K. Wilson,et al.  Triatomic Photofragment Spectra: I. Energy Partitioning in NO2 Photodissociation, , 1972 .

[33]  D. Conway Geometries of O4+, O4−, and N4+ by an Approximate SCF–MO Theory Which Considers Intermolecular Differential Overlap , 1969 .

[34]  L. E. Nesbitt,et al.  Stability of O4 , 1968 .

[35]  H. S. Gutowsky Techniques in Chemistry , 1966 .

[36]  W. Fite,et al.  Electronic and Atomic Collisions. , 1965, Science.

[37]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules , 1944 .

[38]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .