The MP2 limit correction applied to coupled cluster calculations of the electronic dissociation energies of the hydrogen fluoride and water dimers

The basis set convergence of ab initio computed electronic dissociation energies is reported for the hydrogen bonded complexes (HF)2 (H2O)2. At the level of CCSD(T) theory (coupled cluster model with singles, doubles, and approximate connected triples), the interaction energy is split into one- and two-body terms, and corrections such as the counterpoise (CP) and the MP2 limit are explored. The MP2-limit correction consists of substituting the second-order Moller-Plesset (MP2) perturbation theory contribution computed with the actual basis set by the limiting value that is obtained in a complete basis. Clearly the basis set convergence of the CCSD(T) calculations is improved by the MP2 limit correction. Moreover, the MP2-limit correction can be applied irrespective of whether or not the two-body term has been CP corrected beforehand. Little difference is found between the two possibilities, but the most accurate results are obtained by applying the MP2 limit correction to CP corrected CCSD(T) two-body ter...

[1]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[2]  Gregory S. Tschumper,et al.  A high level theoretical investigation of the cyclic hydrogen fluoride trimer , 1997 .

[3]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[4]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[5]  W. Klopper Limiting values for Mo/ller–Plesset second‐order correlation energies of polyatomic systems: A benchmark study on Ne, HF, H2O, N2, and He...He , 1995 .

[6]  M. Blomberg,et al.  PCI-X, a parametrized correlation method containing a single adjustable parameter X , 1994 .

[7]  Trygve Helgaker,et al.  A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models , 1997 .

[8]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[9]  K. Szalewicz,et al.  Effects of monomer geometry and basis set saturation on computed depth of water dimer potential , 1996 .

[10]  M. Schütz,et al.  Ab Initio Calculations of the Binding Energies of Small (H2O)n Clusters (n = 1…4) , 1995 .

[11]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[12]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[13]  G. A. Petersson,et al.  A Comparison of Model Chemistries , 1995 .

[14]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[15]  Leo Radom,et al.  An assessment of theoretical procedures for the calculation of reliable free radical thermochemistry: A recommended new procedure , 1998 .

[16]  F. B. van Duijneveldt,et al.  SCF, MP2, and CEPA‐1 calculations on the OH ‥ O hydrogen bonded complexes (H2O)2 and (H2O‐H2CO) , 1990 .

[17]  E. Davidson,et al.  Electron correlation contribution to the hydrogen bond in hydrogen fluoride dimer , 1993 .

[18]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[19]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[20]  G. A. Petersson,et al.  A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements , 1988 .

[21]  S. Scheiner,et al.  Ab initio studies of hydrogen bonds: the water dimer paradigm. , 1994, Annual review of physical chemistry.

[22]  Krishnan Raghavachari,et al.  ASSESSMENT OF COMPLETE BASIS SET METHODS FOR CALCULATION OF ENTHALPIES OF FORMATION , 1998 .

[23]  S. J. Cole,et al.  A theoretical study of the water dimer interaction , 1988 .

[24]  M. Quack,et al.  HF dimer: Empirically refined analytical potential energy and dipole hypersurfaces from ab initio calculations , 1998 .

[25]  Martin Quack,et al.  On hydrogen-bonded complexes: the case of (HF)2 , 1996 .

[26]  Sotiris S. Xantheas,et al.  On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy , 1996 .

[27]  Jan M. L. Martin Coupling between the convergence behavior of basis set and electron correlation: a quantitative study , 1997 .

[28]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[29]  A. D. McLean,et al.  The binding energy of the ground state of Be2 , 1983 .

[30]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[31]  J. Novoa,et al.  On the usefulness of the counterpoise method on hydrogen-bonded complexes: a numerical test using near complete basis sets on H2O … HF, (H2O)2, (HF) 2 and CH4…H2O , 1996 .

[32]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[33]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[34]  A. D. McLean,et al.  Abinitio potential curve for Be2(1Σg+) from the interacting correlated fragments method , 1980 .

[35]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[36]  N. Kestner He–He Interaction in the SCF–MO Approximation , 1968 .

[37]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[38]  J. Almlöf,et al.  Towards the one‐particle basis set limit of second‐order correlation energies: MP2‐R12 calculations on small Ben and Mgn clusters (n=1–4) , 1993 .

[39]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions. X. Comparison with , 1997 .

[40]  S. Scheiner,et al.  Correction of the basis set superposition error in SCF and MP2 interaction energies. The water dimer , 1986 .

[41]  A. D. McLean,et al.  On the dissociation energy of Mg2 , 1990 .

[42]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[43]  Brian J. Smith,et al.  Transition structures for the interchange of hydrogen atoms within the water dimer , 1990 .

[44]  D. Hadzi Theoretical treatments of hydrogen bonding , 1997 .

[45]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions XII. Core correlation effects on the homonuclear diatomic molecules B2-F2 , 1997 .

[46]  David Feller,et al.  Hydrogen bond energy of the water dimer , 1996 .

[47]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[48]  Kirk A. Peterson,et al.  BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE FUNCTIONS. VII: BINDING ENERGY AND STRUCTURE OF THE HF DIMER , 1995 .

[49]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[50]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[51]  J. Noga,et al.  A CCSD(T)-R12 study of the ten-electron systems Ne, F-, HF, H2O, NH3, NH4+ and CH4 , 1997 .

[52]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[53]  P. Siegbahn,et al.  First row benchmark tests of the parametrized configuration interaction with parameter X (PCI‐X) scheme , 1995 .

[54]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[55]  M. Quack,et al.  A new ab initio based six-dimensional semi-empirical pair interaction potential for HF , 1996 .

[56]  Kirk A. Peterson,et al.  Intrinsic Errors in Several ab Initio Methods: The Dissociation Energy of N2 , 1995 .

[57]  Paul von Ragué Schleyer,et al.  A critical analysis of electronic density functionals for structural, energetic, dynamic, and magnetic properties of hydrogen fluoride clusters , 1997 .

[58]  John E. Carpenter,et al.  Validity of additivity approximations used in GAUSSIAN‐2 theory , 1992 .

[59]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[60]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[61]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[62]  E. Davidson,et al.  The water dimer: correlation energy calculations , 1993 .

[63]  Peter R. Taylor,et al.  Benchmark quality total atomization energies of small polyatomic molecules , 1997 .

[64]  F. Tao,et al.  Accurate calculation of the binding energy of the water dimer , 1994 .

[65]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[66]  F. B. van Duijneveldt,et al.  Convergence to the basis‐set limit in ab initio calculations at the correlated level on the water dimer , 1992 .

[67]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[68]  H. Lüthi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies , 1995 .

[69]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[70]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[71]  Krishnan Raghavachari,et al.  Gaussian-2 theory using reduced Moller--Plesset orders , 1993 .

[72]  A. D. McLean,et al.  The interacting correlated fragments model for weak interactions, basis set superposition error, and the helium dimer potential , 1989 .

[73]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[74]  E. Kryachko,et al.  Conceptual Perspectives in Quantum Chemistry , 1997 .

[75]  K. Liedl Dangers of counterpoise corrected hypersurfaces. Advantages of basis set superposition improvement , 1998 .

[76]  H. Schaefer,et al.  Vibrational frequencies of the HF dimer from the coupled cluster method including all single and double excitations plus perturbative connected triple excitations , 1995 .

[77]  Roland Lindh,et al.  The water dimer interaction energy: Convergence to the basis set limit at the correlated level , 1997 .

[78]  Hans Peter Lüthi,et al.  TOWARDS THE ACCURATE COMPUTATION OF PROPERTIES OF TRANSITION METAL COMPOUNDS : THE BINDING ENERGY OF FERROCENE , 1996 .