Fourier Phase Retrieval: Uniqueness and Algorithms

The problem of recovering a signal from its phaseless Fourier transform measurements, called Fourier phase retrieval, arises in many applications in engineering and science. Fourier phase retrieval poses fundamental theoretical and algorithmic challenges. In general, there is no unique mapping between a one-dimensional signal and its Fourier magnitude, and therefore the problem is ill-posed. Additionally, while almost all multidimensional signals are uniquely mapped to their Fourier magnitude, the performance of existing algorithms is generally not well-understood. In this chapter we survey methods to guarantee uniqueness in Fourier phase retrieval. We then present different algorithmic approaches to retrieve the signal in practice. We conclude by outlining some of the main open questions in this field.

[1]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[2]  Veit Elser Phase retrieval by iterated projections. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  R. J.,et al.  Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint , 2002 .

[4]  Yonina C. Eldar,et al.  On Signal Reconstruction from FROG Measurements , 2017, Applied and Computational Harmonic Analysis.

[5]  Ben Leshem,et al.  Direct phase retrieval in double blind Fourier holography. , 2014, Optics express.

[6]  Pavel Sidorenko,et al.  Ptychographic reconstruction algorithm for frequency resolved optical gating: super-resolution and supreme robustness , 2016 .

[7]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[8]  Rayan Saab,et al.  MEASUREMENTS: IMPROVED ROBUSTNESS VIA EIGENVECTOR-BASED ANGULAR SYNCHRONIZATION , 2022 .

[9]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[10]  Yonina C. Eldar,et al.  Sparsity-based super-resolution coherent diffractive imaging of (practically) 1D images using extreme UV radiation , 2013, CLEO: 2013.

[11]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[12]  Heinz H. Bauschke,et al.  Hybrid projection-reflection method for phase retrieval. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Gerlind Plonka-Hoch,et al.  Sparse Phase Retrieval of One-Dimensional Signals by Prony's Method , 2017, Front. Appl. Math. Stat..

[14]  Yonina C. Eldar,et al.  On the 2D Phase Retrieval Problem , 2016, IEEE Transactions on Signal Processing.

[15]  Shai Dekel,et al.  Robust Recovery of Stream of Pulses using Convex Optimization , 2014, ArXiv.

[16]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[17]  D. Sayre Some implications of a theorem due to Shannon , 1952 .

[18]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[19]  Robert Beinert,et al.  One-dimensional phase retrieval with additional interference measurements , 2016, ArXiv.

[20]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[21]  Yonina C. Eldar,et al.  Non-Convex Phase Retrieval From STFT Measurements , 2016, IEEE Transactions on Information Theory.

[22]  G. Plonka,et al.  Ambiguities in One-Dimensional Discrete Phase Retrieval from Fourier Magnitudes , 2015 .

[23]  L. Fejér Über trigonometrische Polynome. , 1916 .

[24]  A. Faridian,et al.  Nanoscale imaging using deep ultraviolet digital holographic microscopy. , 2010, Optics express.

[25]  Yuxin Chen,et al.  The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences , 2016, Communications on Pure and Applied Mathematics.

[26]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[27]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[28]  Yonina C. Eldar,et al.  On Fienup Methods for Sparse Phase Retrieval , 2017, IEEE Transactions on Signal Processing.

[29]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[30]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[31]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[32]  Gerlind Plonka-Hoch,et al.  Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain , 2016, Applied and Computational Harmonic Analysis.

[33]  K. Nugent,et al.  Phase retrieval in x-ray imaging based on using structured illumination , 2008 .

[34]  Monson H. Hayes,et al.  Phase retrieval using a window function , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[35]  S. Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[36]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[37]  Yonina C. Eldar,et al.  Phaseless super-resolution using masks , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  Yonina C Eldar,et al.  Sparsity-based Super-resolution and Phase-retrieval in Waveguide Arrays References and Links , 2022 .

[39]  Robert Beinert,et al.  Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem , 2016, ArXiv.

[40]  Zhizhen Zhao,et al.  Bispectrum Inversion With Application to Multireference Alignment , 2017, IEEE Transactions on Signal Processing.

[41]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[42]  Robert Beinert One-Dimensional Phase Retrieval with Additional Interference Intensity Measurements , 2017 .

[43]  Dirk Langemann,et al.  Phase reconstruction by a multilevel iteratively regularized Gauss–Newton method , 2008 .

[44]  Chandra Sekhar Seelamantula,et al.  An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[45]  Monson H. Hayes,et al.  The phase retrieval problem in X-ray crystallography , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[46]  Buyurmaiz Baykal,et al.  Blind channel estimation via combining autocorrelation and blind phase estimation , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[47]  Axel Flinth,et al.  Phase Retrieval from Gabor Measurements , 2015, Journal of Fourier Analysis and Applications.

[48]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[49]  A. Oppenheim,et al.  Signal reconstruction from phase or magnitude , 1980 .

[50]  Babak Hassibi,et al.  Reconstruction of Signals From Their Autocorrelation and Cross-Correlation Vectors, With Applications to Phase Retrieval and Blind Channel Estimation , 2016, IEEE Transactions on Signal Processing.

[51]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[52]  Dustin G. Mixon,et al.  Phase retrieval from power spectra of masked signals , 2013, ArXiv.

[53]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[54]  Rick Trebino,et al.  Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating , 2012 .

[55]  O. S. Harman A Century of Nature: Twenty-One Discoveries That Changed Science and the World , 2004 .

[56]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[57]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[58]  Yonina C. Eldar,et al.  Sparse Phase Retrieval from Short-Time Fourier Measurements , 2014, IEEE Signal Processing Letters.

[59]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[60]  Yonina C. Eldar,et al.  Phase Retrieval from 1D Fourier Measurements: Convexity, Uniqueness, and Algorithms , 2016, IEEE Transactions on Signal Processing.

[61]  Yonina C. Eldar,et al.  Phase retrieval with masks using convex optimization , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[62]  Shai Dekel,et al.  Super-Resolution on the Sphere Using Convex Optimization , 2014, IEEE Transactions on Signal Processing.

[63]  S Marchesini,et al.  Invited article: a [corrected] unified evaluation of iterative projection algorithms for phase retrieval. , 2006, The Review of scientific instruments.

[64]  J. Bertolotti,et al.  Non-invasive imaging through opaque scattering layers , 2012, Nature.

[65]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[66]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[67]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[68]  Ben Leshem,et al.  Direct single-shot phase retrieval from the diffraction pattern of separated objects , 2016, Nature Communications.

[69]  Warren D. Smith,et al.  Reconstructing Sets From Interpoint Distances , 2003 .

[70]  Ben Leshem,et al.  The discrete sign problem: Uniqueness, recovery algorithms and phase retrieval applications , 2016, Applied and Computational Harmonic Analysis.

[71]  Ankur Moitra,et al.  Message‐Passing Algorithms for Synchronization Problems over Compact Groups , 2016, ArXiv.

[72]  Christos Thrampoulidis,et al.  Phaseless super-resolution in the continuous domain , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[73]  Yang Wang,et al.  Fast Phase Retrieval from Local Correlation Measurements , 2015, SIAM J. Imaging Sci..

[74]  Felix Krahmer,et al.  Improved Recovery Guarantees for Phase Retrieval from Coded Diffraction Patterns , 2014, arXiv.org.

[75]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[76]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[77]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[78]  Amit Singer,et al.  Tightness of the maximum likelihood semidefinite relaxation for angular synchronization , 2014, Math. Program..

[79]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[80]  J. Miao,et al.  Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. , 2012, Journal of applied crystallography.

[81]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[82]  Yonina C. Eldar,et al.  Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow , 2016, IEEE Transactions on Information Theory.

[83]  Palina Salanevich,et al.  Robust Phase Retrieval Algorithm for Time-Frequency Structured Measurements , 2016, SIAM J. Imaging Sci..

[84]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[85]  Laura Waller,et al.  Experimental robustness of Fourier Ptychography phase retrieval algorithms , 2015, Optics express.

[86]  Yonina C. Eldar,et al.  An algorithm for exact super-resolution and phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[87]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[88]  Nirit Dudovich,et al.  Vectorial Phase Retrieval of 1-D Signals , 2013, IEEE Transactions on Signal Processing.

[89]  Mahdi Soltanolkotabi,et al.  Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization , 2017, IEEE Transactions on Information Theory.

[90]  S. Marchesini,et al.  Alternating projection, ptychographic imaging and phase synchronization , 2014, 1402.0550.

[91]  M. Hayes,et al.  Reducible polynomials in more than one variable , 1982, Proceedings of the IEEE.

[92]  Tamir Bendory,et al.  Robust Recovery of Positive Stream of Pulses , 2015, IEEE Transactions on Signal Processing.

[93]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[94]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[95]  Jae S. Lim,et al.  Signal estimation from modified short-time Fourier transform , 1983, ICASSP.

[96]  Marco Donatelli,et al.  Multilevel Gauss–Newton methods for phase retrieval problems , 2006 .

[97]  Dirk Langemann,et al.  Multilevel Phase Reconstruction for a Rapidly Decreasing Interpolating Function , 2009 .

[98]  Yonina C. Eldar,et al.  On the Uniqueness of FROG Methods , 2017, IEEE Signal Processing Letters.

[99]  Pavel Sidorenko,et al.  Single-shot ptychography , 2016 .

[100]  Garth J. Williams,et al.  Multiple wavelength diffractive imaging. , 2009 .

[101]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[102]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[103]  Nicolas Boumal,et al.  Nonconvex Phase Synchronization , 2016, SIAM J. Optim..

[104]  D. Kane Principal components generalized projections: a review [Invited] , 2008 .

[105]  Manfred Tasche,et al.  Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness , 2004 .

[106]  Andrew V. Martin,et al.  Noise-robust coherent diffractive imaging with a single diffraction pattern , 2012 .

[107]  Mark Stefik,et al.  Inferring DNA Structures from Segmentation Data , 1978, Artif. Intell..

[108]  Rick Trebino,et al.  Frequency-resolved optical gating with the use of second-harmonic generation , 1994 .

[109]  Yonina C. Eldar,et al.  STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2015, IEEE Journal of Selected Topics in Signal Processing.

[110]  Yonina C. Eldar,et al.  Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects , 2015, Nature Communications.

[111]  Yutong Chen,et al.  NON-UNIQUE GAMES OVER COMPACT GROUPS AND ORIENTATION ESTIMATION IN CRYO-EM , 2015, Inverse problems.

[112]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[113]  Yonina C. Eldar,et al.  DOLPHIn—Dictionary Learning for Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[114]  Rick Trebino,et al.  Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating , 1997 .

[115]  B Nadler,et al.  Vectorial phase retrieval for linear characterization of attosecond pulses. , 2011, Physical review letters.

[116]  Yonina C. Eldar,et al.  Efficient coherent diffractive imaging for sparsely varying objects. , 2013, Optics express.

[117]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[118]  L. G. Sodin,et al.  On the ambiguity of the image reconstruction problem , 1979 .

[119]  V. Elser Solution of the crystallographic phase problem by iterated projections. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[120]  Fucai Zhang,et al.  Superresolution imaging via ptychography. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[121]  Jae Lim,et al.  Signal reconstruction from short-time Fourier transform magnitude , 1983 .

[122]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[123]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[124]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[125]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[126]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[127]  Babak Hassibi,et al.  Multiple illumination phaseless super-resolution (MIPS) with applications to phaseless DoA estimation and diffraction imaging , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[128]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[129]  Albert Fannjiang,et al.  Absolute uniqueness of phase retrieval with random illumination , 2011, ArXiv.

[130]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[131]  Robert Beinert,et al.  Ambiguities in one-dimensional phase retrieval from Fourier magnitudes , 2016 .

[132]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[133]  Monson H. Hayes,et al.  Phase retrieval using a window function , 1993, IEEE Trans. Signal Process..

[134]  E. Loewen,et al.  Diffraction Gratings and Applications , 2018 .

[135]  Amit Singer,et al.  Multireference Alignment Is Easier With an Aperiodic Translation Distribution , 2017, IEEE Transactions on Information Theory.

[136]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[137]  J. Miao,et al.  Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method , 2007 .

[138]  Yonina C. Eldar Sampling Theory: Beyond Bandlimited Systems , 2015 .

[139]  Lei Xu,et al.  Almost unique specification of discrete finite length signal: From its end point and Fourier transform magnitude , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[140]  J. Miao,et al.  High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution , 2008, Proceedings of the National Academy of Sciences.