Beyond stabilizer codes I: Nice error bases

Nice error bases have been introduced by Knill (1996) as a generalization of the Pauli basis. These bases are shown to be projective representations of finite groups. We classify all nice error bases of small degree, and all nice error bases with Abelian index groups. We show that, in general, an index group of a nice error basis is necessarily solvable.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Institute for Scientific Interchange Foundation,et al.  Stabilizing Quantum Information , 1999 .

[3]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[4]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[5]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[6]  J. Yellen ON GROUPS OF CENTRAL TYPE , 1976 .

[7]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[8]  Shahriar Shahriari On central type factor groups , 1991 .

[9]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[10]  Howard Barnum,et al.  Quantum message authentication codes , 2001, quant-ph/0103123.

[11]  Larry C. Grove Groups and Characters: Grove/Groups , 1997 .

[12]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[13]  Larry C. Grove Groups and characters , 1997 .

[14]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[15]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[16]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[17]  Characters fully ramified over a normal subgroup. , 1974 .

[18]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[19]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.