A Semantic Web Approach to Integrate Phenotype Descriptions and Clinical Data

Integrating phenotype descriptions from text-rich research resources, such as OMIM, and data from experimental and clinical practice is one of the current challenges to promote translational research. Exploring new technologies to uniformly represent biomedical information is needed to support integration of information drawn from disparate sources. Positive progress to integrate data requires to propose solutions supporting fully semantic translations. The Semantic Web is a promising technology, so international efforts, such as the OBO Foundry, are developing ontologies to support annotation and integration of scientific data. In this paper, we show an approach to get concordances between phenotype descriptions and clinical data, supported by knowledge adapters based on description logic and semantic web rules. This integration provides a valuable resource for researchers in order to infer new data for statistical analysis.

[1]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[2]  Eric K. Neumann,et al.  Identifying disease-causal genes using Semantic Web-based representation of integrated genomic and phenomic knowledge , 2008, J. Biomed. Informatics.

[3]  I. Fokkema,et al.  LOVD: Easy creation of a locus‐specific sequence variation database using an “LSDB‐in‐a‐box” approach , 2005, Human mutation.

[4]  Holger Knublauch,et al.  The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications , 2004, SEMWEB.

[5]  Jeffrey M. Bradshaw,et al.  Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment , 2004, SEMWEB.

[6]  Monte Westerfield,et al.  Linking Human Diseases to Animal Models Using Ontology-Based Phenotype Annotation , 2009, PLoS biology.

[7]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[8]  C Béroud,et al.  UMD (Universal Mutation Database): A generic software to build and analyze locus‐specific databases , 2000, Human mutation.

[9]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[10]  Alexander Goncearenco,et al.  Homology modeling of a voltage-gated potassium channel (human Kv7.1) , 2007, BMC Bioinformatics.

[11]  U. Francke,et al.  Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. , 1991, The Journal of biological chemistry.

[12]  Kei-Hoi Cheung,et al.  Advancing translational research with the Semantic Web , 2007, BMC Bioinformatics.

[13]  Cynthia L. Smith,et al.  Integrating phenotype ontologies across multiple species , 2010, Genome Biology.

[14]  Toshio Kojima,et al.  Planning the Human Variome Project: The Spain report , 2009, Human mutation.

[15]  Alan F. Scott,et al.  McKusick's Online Mendelian Inheritance in Man (OMIM®) , 2008, Nucleic Acids Res..

[16]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[17]  Belén Pilo de la Fuente Xantomatosis cerebrotendinosa en España. Mutaciones, aspectos clínicos y terapéuticos , 2009 .

[18]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[19]  Dieter Fensel,et al.  The Unified Problem-Solving Method Development Language UPML , 2003, Knowl. Inf. Syst..

[20]  B Smith,et al.  Putting Biomedical Ontologies to Work , 2010, Methods of Information in Medicine.