A framework for semantic reconciliation of disparate earth observation thematic data

There is a growing demand for digital databases of topographic and thematic information for a multitude of applications in environmental management, and also in data integration and efficient updating of other spatially oriented data. These thematic data sets are highly heterogeneous in syntax, structure and semantics as they are produced and provided by a variety of agencies having different definitions, standards and applications of the data. In this paper, we focus on the semantic heterogeneity in thematic information sources, as it has been widely recognized that the semantic conflicts are responsible for the most serious data heterogeneity problems hindering the efficient interoperability between heterogeneous information sources. In particular, we focus on the semantic heterogeneities present in the land cover classification schemes corresponding to the global land cover characterization data. We propose a framework (semantics enabled thematic data Integration (SETI)) that describes in depth the methodology involved in the reconciliation of such semantic conflicts by adopting the emerging semantic web technologies. Ontologies were developed for the classification schemes and a shared-ontology approach for integrating the application level ontologies as described. We employ description logics (DL)-based reasoning on the terminological knowledge base developed for the land cover characterization which enables querying and retrieval that goes beyond keyword-based searches.

[1]  Volker Walter,et al.  Matching spatial data sets: a statistical approach , 1999, Int. J. Geogr. Inf. Sci..

[2]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[3]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[4]  Farshad Hakimpour,et al.  Global Schema Generation Using Formal Ontologies , 2002, ER.

[5]  Kari Thoresen,et al.  Evolutionary prototyping in a change perspective:: A tale of three municipalities , 1990 .

[6]  Sudha Ram,et al.  Semantic conflict resolution ontology (SCROL): an ontology for detecting and resolving data and schema-level semantic conflicts , 2004, IEEE Transactions on Knowledge and Data Engineering.

[7]  Ingo J. Timm,et al.  Terminology Integration for the Management of distributed Information Resources , 2002, Künstliche Intell..

[8]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[9]  Frank van Harmelen,et al.  A semantic web primer , 2004 .

[10]  Volker Haarslev,et al.  Description of the RACER System and its Applications , 2001, Description Logics.

[11]  Peter F. Patel-Schneider,et al.  Meaning and the semantic web , 2004, WWW Alt. '04.

[12]  Marinos Kavouras,et al.  A method for the formalization and integration of geographical categorizations , 2002, Int. J. Geogr. Inf. Sci..

[13]  Amit P. Sheth,et al.  Geospatial Ontology Development and Semantic Analytics , 2006, Trans. GIS.

[14]  Marinos Kavouras,et al.  Comparing categories among geographic ontologies , 2005, Comput. Geosci..

[15]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[16]  Stuart E. Madnick,et al.  Representing and reasoning about semantic conflicts in heterogeneous information systems , 1997 .

[17]  Surya S. Durbha,et al.  An Information Semantics Approach for Knowledge Management and Interoperability for the Global Earth Observation System of Systems , 2008, IEEE Systems Journal.

[18]  R. Dickinson,et al.  Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)] , 1993 .

[19]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[20]  Dieter Fensel,et al.  Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information , 1999, DS-8.

[21]  Vipul Kashyap,et al.  OBSERVER: An Approach for Query Processing in Global Information Systems Based on Interoperation Across Pre-Existing Ontologies , 2000, Distributed and Parallel Databases.

[22]  Frank van Harmelen,et al.  Information Sharing on the Semantic Web , 2004, Advanced Information and Knowledge Processing.

[23]  Max J. Egenhofer,et al.  Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure , 2004, Int. J. Geogr. Inf. Sci..

[24]  Farshad Hakimpour,et al.  Resolving semantic heterogeneity in schema integration , 2001, FOIS.

[25]  Steven W. Running,et al.  A vegetation classification logic-based on remote-sensing for use in global biogeochemical models , 1994 .

[26]  Ola Ahlqvist,et al.  Please Scroll down for Article International Journal of Geographical Information Science Using Uncertain Conceptual Spaces to Translate between Land Cover Categories Using Uncertain Conceptual Spaces to Translate between Land Cover Categories , 2022 .

[27]  Erich J. Neuhold,et al.  Knowledge Based Integration of Heterogeneous Databases , 1992, DS-5.

[28]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[29]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[30]  Bart Selman,et al.  Knowledge compilation and theory approximation , 1996, JACM.

[31]  Peter F. Fisher,et al.  Integrating land-cover data with different ontologies: identifying change from inconsistency , 2004, Int. J. Geogr. Inf. Sci..

[32]  Michael F. Worboys,et al.  An algebraic approach to automated information fusion , 2005 .

[33]  Arie Shoshani,et al.  The Earth System Grid Discovery and Semantic Web Technologies , 2003 .

[34]  Isabel F. Cruz,et al.  Querying Heterogeneous Land Use Data: Problems and Potential , 2002, DG.O.

[35]  Yaser A. Bishr,et al.  Overcoming the Semantic and Other Barriers to GIS Interoperability , 1998, Int. J. Geogr. Inf. Sci..

[36]  Jeff Dozier,et al.  EOS : science strategy for the Earth Observing System , 1994 .

[37]  Mike Uschold,et al.  A Framework for Understanding and Classifying Ontology Applications , 1999 .

[38]  Michael F. Worboys,et al.  Integrating Spatio-Thematic Information , 2002, GIScience.

[39]  Jennifer Golbeck,et al.  Visualization of semantic metadata and ontologies , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[40]  Frank van Harmelen,et al.  Approximating Terminological Queries , 2002, FQAS.

[41]  Farshad Hakimpour,et al.  Resolving Semantic Heterogeneity in Schema Integration: an Ontology Based Approach , 2001 .

[42]  Christine Collet,et al.  Resource integration using a large knowledge base in Carnot , 1991, Computer.

[43]  Limin Yang,et al.  An analysis of the IGBP global land-cover characterization process , 1999 .

[44]  Diego Calvanese,et al.  Reasoning in Expressive Description Logics , 2001, Handbook of Automated Reasoning.

[45]  Heiner Stuckenschmidt,et al.  Ontologies for geographic information processing , 2002 .

[46]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[47]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[48]  Max J. Egenhofer,et al.  Determining Semantic Similarity among Entity Classes from Different Ontologies , 2003, IEEE Trans. Knowl. Data Eng..

[49]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[50]  A. Scott Denning,et al.  Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model: Part 1: Surface carbon fluxes , 1996 .

[51]  Stephan Winter,et al.  Ontology and semantic interoperability , 2005 .