Bridging InSAR and GPS Tomography: A New Differential Geometrical Constraint

The integration of interferometric synthetic aperture radar (InSAR) and GPS tomography techniques for the estimation of the 3-D distribution of atmosphere refractivity is discussed. A methodology to use the maps of the temporal changes of precipitable water vapor (PWV) provided by InSAR as a further constraint in the GPS tomography is described. The aim of the methodology is to increase the accuracy of the GPS tomography reconstruction of the atmosphere's refractivity. The results, which are obtained with SAR and GPS data acquired over the Lisbon area, Portugal, are presented and assessed. It has been found that the reconstruction of the atmospheric refractivity is closer to the real atmospheric state with a mitigation of the smoothing effects due to the usual geometrical constraints of the GPS tomography.

[1]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[2]  Giovanni Emilio Perona,et al.  Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks , 2011 .

[3]  Joao P. S. Catalao,et al.  Experimental GNSS tomography study in Lisbon (Portugal) , 2014 .

[4]  J. Catalão,et al.  Can spaceborne SAR interferometry be used to study the temporal evolution of PWV , 2013 .

[5]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[6]  Joël Van Baelen On the relationship between water vapor field evolution and Precipitation systems lifecycle , 2011 .

[7]  Giovanni Nico,et al.  Uncertainty Assessment of the Estimated Atmospheric Delay Obtained by a Numerical Weather Model (NMW) , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[8]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[9]  J. Catalao,et al.  Iberia-Azores Gravity Model (IAGRM) using multi-source gravity data , 2006 .

[10]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[11]  Giovanni Nico,et al.  Using the matrix pencil method to solve phase unwrapping , 2003, IEEE Trans. Signal Process..

[12]  P.R.C.S. Benevides,et al.  Estudio experimental de tomografía GNSS en Lisboa (Portugal) (en inglés) , 2014 .

[13]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[14]  Marie-Noëlle Bouin,et al.  GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment , 2005 .

[15]  Giovanni Nico Exact closed-form geolocation for SAR interferometry , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  Elmar Brockmann,et al.  Tomographic determination of the spatial distribution of water vapor using GPS observations , 2006 .

[17]  G. Ruffini,et al.  Tropospheric Tomography using GPS Estimated Slant Delays , 2008 .

[18]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[19]  Giovanni Nico,et al.  Maps of PWV Temporal Changes by SAR Interferometry: A Study on the Properties of Atmosphere's Temperature Profiles , 2014, IEEE Geoscience and Remote Sensing Letters.

[20]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[21]  G. D. Thayer,et al.  An improved equation for the radio refractive index of air , 1974 .

[22]  Pedro M. A. Miranda,et al.  Experimental Study on the Atmospheric Delay Based on GPS, SAR Interferometry, and Numerical Weather Model Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Fabian Hurter,et al.  4D GPS water vapor tomography: new parameterized approaches , 2011 .

[24]  Witold Rohm,et al.  The ground GNSS tomography – unconstrained approach , 2013 .