An Ultra-High Input Impedance Analog Front End Using Self-Calibrated Positive Feedback

This paper presents circuit techniques for ultra-high input impedance analog front end (AFE). In order to boost input impedance, various on- and off-chip parasitic capacitances are cancelled using an active shield and negative capacitance technique. To maximize the cancellation, a self-calibration scheme with active shield replica is proposed for positive feedback-based negative capacitance, which settles at the boundary between stable and unstable states in calibration mode. A prototype IC fabricated in 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS achieves an input impedance of 50 <inline-formula> <tex-math notation="LaTeX">$\text{G}\Omega$ </tex-math></inline-formula> at 50 Hz, equivalent to 60-fF capacitance, while consuming 289 nW from 0.8-V supply. The proposed AFE is applied to heart-rate monitoring using 1-cm<sup>2</sup> dry electrodes over clothes without any straps.

[1]  SeongHwan Cho,et al.  A 255nW ultra-high input impedance analog front-end for non-contact ECG monitoring , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[2]  Hariprasad Chandrakumar,et al.  5.5 A 2µW 40mVpp linear-input-range chopper- stabilized bio-signal amplifier with boosted input impedance of 300MΩ and electrode-offset filtering , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[3]  Mark F. Bocko,et al.  A low noise, non-contact capacitive cardiac sensor , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Refet Firat Yazicioglu,et al.  A 160μW 8-channel active electrode system for EEG monitoring , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[6]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[7]  Atila Alvandpour,et al.  A 0.4-V Subnanowatt 8-Bit 1-kS/s SAR ADC in 65-nm CMOS for Wireless Sensor Applications , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Hao Gao,et al.  21.2 A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[9]  Refet Firat Yazicioglu,et al.  A 30 $\mu$ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring , 2011, IEEE Journal of Solid-State Circuits.

[10]  Gert Cauwenberghs,et al.  Ultra-High Input Impedance, Low Noise Integrated Amplifier for Noncontact Biopotential Sensing , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[11]  Gert Cauwenberghs,et al.  Wireless non-contact cardiac and neural monitoring , 2010, Wireless Health.

[12]  Refet Firat Yazicioglu,et al.  24.4 A 680nA fully integrated implantable ECG-acquisition IC with analog feature extraction , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[13]  David Blaauw,et al.  An Injectable 64 nW ECG Mixed-Signal SoC in 65 nm for Arrhythmia Monitoring , 2015, IEEE Journal of Solid-State Circuits.

[14]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[15]  Qiang Li,et al.  A wearable ear-EEG recording system based on dry-contact active electrodes , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[16]  Zhe Zhang,et al.  A 2.89 $\mu $ W Dry-Electrode Enabled Clockless Wireless ECG SoC for Wearable Applications , 2016, IEEE Journal of Solid-State Circuits.

[17]  Atila Alvandpour,et al.  Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[18]  Refet Firat Yazicioglu,et al.  A $160~\mu {\rm W}$ 8-Channel Active Electrode System for EEG Monitoring , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[19]  Charles Sodini,et al.  A continuous, wearable, and wireless heart monitor using head ballistocardiogram (BCG) and head electrocardiogram (ECG) , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.