The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures.

[1]  J. D. Bernal,et al.  Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres , 1967 .

[2]  B. Goldin,et al.  L-Glutamate Dehydrogenases* , 1971 .

[3]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[4]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[5]  C. Chothia Structural invariants in protein folding , 1975, Nature.

[6]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[7]  B. Matthews 4 – X-Ray Structure of Proteins , 1977 .

[8]  M. Perutz Electrostatic effects in proteins. , 1978, Science.

[9]  J. Thornton,et al.  Ion-pairs in proteins. , 1983, Journal of molecular biology.

[10]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[11]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[12]  D. Rice,et al.  Crystallization of an NAD+-dependent glutamate dehydrogenase from Clostridium symbiosum. , 1985, Journal of molecular biology.

[13]  A M Lesk,et al.  Interior and surface of monomeric proteins. , 1987, Journal of molecular biology.

[14]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[15]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .

[16]  A. Fersht,et al.  Strength and co-operativity of contributions of surface salt bridges to protein stability. , 1990, Journal of molecular biology.

[17]  R. Chiaraluce,et al.  Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. , 1991, European journal of biochemistry.

[18]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[19]  R Langridge,et al.  Conic: a fast renderer for space-filling molecules with shadows. , 1991, Journal of molecular graphics.

[20]  M. McPherson,et al.  The glutamate dehydrogenase gene of Clotridium symbiosum , 1992 .

[21]  L. Joshua-Tor,et al.  X‐ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium pyrococcus furiosus , 1992, Protein science : a publication of the Protein Society.

[22]  F. Robb,et al.  Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation. , 1992, The Journal of biological chemistry.

[23]  K. Wilson,et al.  The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. , 1992, European journal of biochemistry.

[24]  F. Bossa,et al.  The protein sequence of glutamate dehydrogenase from Sulfolobus solfataricus, a thermoacidophilic archaebacterium. Is the presence of N-epsilon-methyllysine related to thermostability? , 1992, European journal of biochemistry.

[25]  K. Britton,et al.  Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. , 1992, Journal of molecular biology.

[26]  F. Robb,et al.  Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. , 1992, Biochimica et biophysica acta.

[27]  K. Britton,et al.  Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenases. , 1992, European journal of biochemistry.

[28]  K. Britton,et al.  Subunit assembly and active site location in the structure of glutamate dehydrogenase , 1992, Proteins.

[29]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[30]  W. D. de Vos,et al.  The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. , 1993, Gene.

[31]  H. Nakamura,et al.  Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution. , 1993, Journal of molecular biology.

[32]  J. DiRuggiero,et al.  Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4. , 1993, Journal of Biological Chemistry.

[33]  T. Ohshima,et al.  Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria, Pyrococcus woesei and Pyrococcus furiosus. , 1993, Bioscience, biotechnology, and biochemistry.

[34]  M. Nishiyama,et al.  Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. , 1993, Biochemistry.

[35]  D W Rice,et al.  Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. , 1993, Journal of molecular biology.

[36]  F. Bossa,et al.  The amino acid sequence of glutamate dehydrogenase fromPyrococcus furiosus, a hyperthermophilic archaebacterium , 1994, Journal of protein chemistry.

[37]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[38]  G. Taylor,et al.  The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. , 1994, Structure.

[39]  F. Flam The chemistry of life at the margins. , 1994, Science.

[40]  M Gerstein,et al.  Volume changes on protein folding. , 1994, Structure.

[41]  T. Ohshima,et al.  Purification and characterization of extremely thermo-stable glutamate dehydrogenase from a hyperthermophilic archaeon Thermococcus litoralis. , 1994 .

[42]  G. Kleywegt,et al.  Halloween ... Masks and Bones , 1994 .

[43]  D. Rees,et al.  Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase , 1995, Science.

[44]  D C Rees,et al.  Hyperthermophiles: taking the heat and loving it. , 1995, Structure.

[45]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[46]  K. S. Yip,et al.  Crystallization of the NAD(P)-dependent glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. , 1995, Acta crystallographica. Section D, Biological crystallography.

[47]  K. S. Yip,et al.  Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. , 1995, European journal of biochemistry.

[48]  P. S. Kim,et al.  Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. , 1995, Science.

[49]  R. Jaenicke,et al.  The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. , 1995, Journal of molecular biology.

[50]  F. Perler,et al.  Extremozymes: Expanding the Limits of Biocatalysis , 1995, Bio/Technology.

[51]  R. Sauer,et al.  Are buried salt bridges important for protein stability and conformational specificity? , 1995, Nature Structural Biology.