Genetic Analysis of Dauer Formation in Caenorhabditis briggsae

Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to investigate the evolution of dauer formation in the genus Caenorhabditis at the molecular level, we isolated dauer-formation mutations in C. briggsae, a species closely related to the model organism C. elegans. We identified mutations in orthologs of C. elegans genes daf-2 (insulin receptor), daf-3 (Smad), and daf-4 (TGF-β type 2 receptor), as well as genes required for formation of sensory cilia. Phenotypic analyses revealed that functions of these genes are conserved between C. elegans and C. briggsae. Analysis of C. briggsae mutations also revealed a significant difference between the two species in their responses to high temperatures (>26°). C. elegans is strongly induced to form dauers at temperatures above 26°, near the upper limit for growth of C. elegans. In contrast, C. briggsae, which is capable of growth at higher temperatures than C. elegans, lacks this response.

[1]  Asif Chinwalla,et al.  Comparison of C. elegans and C. briggsae Genome Sequences Reveals Extensive Conservation of Chromosome Organization and Synteny , 2007, PLoS biology.

[2]  R. Butcher,et al.  Small-molecule pheromones that control dauer development in Caenorhabditis elegans. , 2007, Nature chemical biology.

[3]  Nansheng Chen,et al.  Genomics and biology of the nematode Caenorhabditis briggsae. , 2007, WormBook : the online review of C. elegans biology.

[4]  K. Kiontke,et al.  Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with the stem species pattern of the Caenorhabditis Elegans group , 2007 .

[5]  D. Charlesworth,et al.  Patterns of Nucleotide Polymorphism Distinguish Temperate and Tropical Wild Isolates of Caenorhabditis briggsae , 2006, Genetics.

[6]  D. Pilgrim,et al.  Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. , 2006, Developmental cell.

[7]  Joanna L. Kelley,et al.  Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Weontae Lee,et al.  Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone , 2005, Nature.

[9]  S. E. Baird,et al.  The genetics of ray pattern variation in Caenorhabditis briggsae , 2005, BMC Evolutionary Biology.

[10]  Tim Schedl,et al.  fog-2 and the Evolution of Self-Fertile Hermaphroditism in Caenorhabditis , 2004, PLoS biology.

[11]  R. Ellis,et al.  A phylogeny of caenorhabditis reveals frequent loss of introns during nematode evolution. , 2004, Genome research.

[12]  Fabio Piano,et al.  Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Chamberlin,et al.  Evolutionary innovation of the excretory system in Caenorhabditis elegans , 2004, Nature Genetics.

[14]  G. Patterson,et al.  DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGFβ pathway to regulate C. elegans dauer development , 2003, Development.

[15]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[16]  P. Sternberg,et al.  cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. , 2003, Developmental biology.

[17]  H. Chamberlin,et al.  Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. , 2002, Genes & development.

[18]  J. Kimble,et al.  Evolution of discrete Notch‐like receptors from a distant gene duplication in Caenorhabditis , 2002, Evolution & development.

[19]  M. Félix,et al.  Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius , 2001, Current Biology.

[20]  J. Kimble,et al.  Conservation of glp-1 regulation and function in nematodes. , 2001, Genetics.

[21]  J. Thomas,et al.  Dauer formation induced by high temperatures in Caenorhabditis elegans. , 2000, Genetics.

[22]  D L Riddle,et al.  daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. , 2000, Genes & development.

[23]  J. Thomas,et al.  A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. , 2000, Genetics.

[24]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[25]  C. Borland,et al.  The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Ruvkun,et al.  A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. , 1999, Genes & development.

[27]  P. Kuwabara,et al.  Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN , 1999, Current Biology.

[28]  J. Lees,et al.  Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Ruvkun,et al.  The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. , 1998, Molecular cell.

[30]  B. Ye,et al.  unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. , 1998, Development.

[31]  C. Kenyon,et al.  daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. , 1997, Science.

[32]  G. Ruvkun,et al.  The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans , 1997, Nature.

[33]  G. Ruvkun,et al.  The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. , 1997, Genes & development.

[34]  Koutarou D. Kimura,et al.  daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. , 1997, Science.

[35]  G. Ruvkun,et al.  A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans , 1996, Nature.

[36]  R. W. Padgett,et al.  Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Hodgkin Genetic nomenclature guide. Caenorhabditis elegans. , 1995, Trends in genetics : TIG.

[38]  J. Thomas,et al.  A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. , 1994, Genetics.

[39]  C. Kenyon,et al.  A C. elegans mutant that lives twice as long as wild type , 1993, Nature.

[40]  James H. Thomas Chemosensory regulation of development in C. elegans , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  D. Riddle,et al.  The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development , 1993, Nature.

[42]  J. Thomas,et al.  Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. , 1993, Genetics.

[43]  J. McGhee,et al.  The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. , 1993, Journal of molecular biology.

[44]  M. Chalfie,et al.  The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. , 1989, Genes & development.

[45]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[46]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[47]  D L Riddle,et al.  The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. , 1984, Developmental biology.

[48]  D. Riddle,et al.  A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[50]  D. Riddle,et al.  A pheromone influences larval development in the nematode Caenorhabditis elegans. , 1982, Science.

[51]  D. Riddle,et al.  Interacting genes in nematode dauer larva formation , 1981, Nature.

[52]  Sydney Brenner,et al.  A uniform genetic nomenclature for the nematode Caenorhabditis elegans , 1979, Molecular and General Genetics MGG.

[53]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[54]  R. Cassada,et al.  The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. , 1975, Developmental biology.

[55]  R. Sommer Pristionchus pacificus. , 2006, WormBook : the online review of C. elegans biology.

[56]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[57]  Wendy S. Schackwitz,et al.  Mutations affecting the chemosensory neurons of Caenorhabditis elegans. , 1995, Genetics.

[58]  J. Thomas,et al.  Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. , 1992, Genetics.

[59]  D. Riddle,et al.  Comparison of a new wild-type caenorhabditis briggsae with laboratory strains of C. Briggsae and C. Elegans , 1983 .

[60]  D. Riddle A genetic pathway for dauer larva formation in caenorhabditis elegans : (nematode, development, neuron) , 1977 .