Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs.

Surface functionalized mesoporous silicon (pSi) microparticles are reported as a solid dispersion carrier for improving dissolution and enhancing the orally administered pharmacokinetics (fasted rat model) of indomethacin (IMC), employed as a model poorly soluble BCS type II drug. IMC was loaded via immersion/solvent evaporation onto the thermally oxidized pSi particles, which provide a stable hydrophilic matrix with a nanoporous structure. The solid state properties of IMC loaded pSi were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry and thermogravimetric analysis. IMC molecules are encapsulated in a noncrystalline state due to geometric confinement in the nanopores; stability of the noncrystalline state has been demonstrated for several months under accelerated storage conditions. The pSi carrier facilitates accelerated immediate release of IMC and enhanced oral delivery performance in comparison with crystalline indomethacin and Indocid i.e. a 4-times reduction on T(max), a 200% increase on C(max) and a significant increase in bioavailability. The in vitro-in vivo correlation is discussed based on the noncompartment model and gives insight into the delivery mechanism for the pSi carrier.

[1]  R. Löbenberg,et al.  Evaluation of Various Dissolution Media for Predicting In Vivo Performance of Class I and II Drugs , 1998, Pharmaceutical Research.

[2]  P. Costa,et al.  Modeling and comparison of dissolution profiles. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[3]  Christos Reppas,et al.  Forecasting the In Vivo Performance of Four Low Solubility Drugs from Their In Vitro Dissolution Data , 1999, Pharmaceutical Research.