Reversing Event Structures

Reversible computation has attracted increasing interest in recent years. In this paper, we show how to model reversibility in concurrent computation as realised abstractly in terms of event structures. Two different forms of event structures are considered, namely event structures defined by causation and prevention relations and event structures given by an enabling relation with prevention. We then show how to reverse the two kinds of event structures, and discuss causal as well as out-of-causal order reversibility.

[1]  Ioana Cristescu,et al.  Contextual equivalences in configuration structures and reversibility , 2015, J. Log. Algebraic Methods Program..

[2]  Irek Ulidowski,et al.  Event Identifier Logic† , 2013, Mathematical Structures in Computer Science.

[3]  Maciej Koutny,et al.  Reversible computation vs. reversibility in Petri nets , 2018 .

[4]  Daniele Varacca,et al.  Typed event structures and the linear pi-calculus , 2010, Theor. Comput. Sci..

[5]  Glynn Winskel,et al.  Petri Nets, Event Structures and Domains, Part I , 1981, Theor. Comput. Sci..

[6]  Vincent Danos,et al.  Formal Molecular Biology done in CCS , 2003 .

[7]  Ivan Lanese,et al.  Controlling Reversibility in Higher-Order Pi , 2011, CONCUR.

[8]  Daniele Varacca,et al.  A Compositional Semantics for the Reversible p-Calculus , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[9]  Glynn Winskel,et al.  Events, Causality and Symmetry , 2008, Comput. J..

[10]  Irek Ulidowski,et al.  Reversing Imperative Parallel Programs , 2017, EXPRESS/SOS.

[11]  Vincent Danos,et al.  Transactions in RCCS , 2005, CONCUR.

[12]  Irek Ulidowski,et al.  Modelling of Bonding with Processes and Events , 2013, RC.

[13]  Nobuko Yoshida,et al.  Towards a categorical representation of reversible event structures , 2019, J. Log. Algebraic Methods Program..

[14]  Daniele Varacca,et al.  Rigid Families for the Reversible π-Calculus , 2016, RC.

[15]  Anna Philippou,et al.  Reversible Computation in Petri Nets , 2018, RC.

[16]  Irek Ulidowski,et al.  A hierarchy of reverse bisimulations on stable configuration structures , 2012, Mathematical Structures in Computer Science.

[17]  Maciej Koutny,et al.  Reversible computation vs. reversibility in Petri nets , 2016, Sci. Comput. Program..

[18]  Ugo Montanari,et al.  Contextual Petri Nets, Asymmetric Event Structures, and Processes , 2001, Inf. Comput..

[19]  Iain C. C. Phillips,et al.  Reversing algebraic process calculi , 2006, J. Log. Algebraic Methods Program..

[20]  Irek Ulidowski,et al.  A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway , 2012, RC.

[21]  Ivan Lanese,et al.  Controlled Reversibility and Compensations , 2012, RC.

[22]  Irek Ulidowski,et al.  Concurrency and Reversibility , 2014, RC.

[23]  Irek Ulidowski,et al.  Local reversibility in a Calculus of Covalent Bonding , 2018, Sci. Comput. Program..

[24]  Cosimo Laneve,et al.  Reversible structures , 2011, CMSB.

[25]  Ivan Lanese,et al.  Reversing Higher-Order Pi , 2010, CONCUR.

[26]  Ivan Lanese,et al.  Causal-Consistent Reversible Debugging , 2014, FASE.

[27]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[28]  Robert Glück,et al.  Join inverse categories and reversible recursion , 2017, J. Log. Algebraic Methods Program..

[29]  Gordon D. Plotkin,et al.  Configuration structures, event structures and Petri nets , 2009, Theor. Comput. Sci..

[30]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[31]  Nobuko Yoshida,et al.  Event Structure Semantics of (controlled) Reversible CCS , 2018, RC.

[32]  Lukasz Mikulski,et al.  Reversing Computations Modelled by Coloured Petri Nets , 2018, ATAED@Petri Nets/ACSD.

[33]  Vincent Danos,et al.  Formal Molecular Biology Done in CCS-R , 2007, Electron. Notes Theor. Comput. Sci..

[34]  Ursula Goltz,et al.  Refinement of actions and equivalence notions for concurrent systems , 2001, Acta Informatica.

[35]  Irek Ulidowski,et al.  Reversibility and asymmetric conflict in event structures , 2015, J. Log. Algebraic Methods Program..

[36]  Irek Ulidowski,et al.  Reversing Parallel Programs with Blocks and Procedures , 2018, EXPRESS/SOS.

[37]  Matthew Hennessy,et al.  The Power of the Future Perfect in Program Logics , 1984, Inf. Control..

[38]  Vincent Danos,et al.  Reversible Communicating Systems , 2004, CONCUR.

[39]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[40]  Robert Glück,et al.  Reversible Flowchart Languages and the Structured Reversible Program Theorem , 2008, ICALP.