Nanoscale magnetic imaging using circularly polarized high-harmonic radiation

We introduce laboratory-scale magneto-optical imaging with sub–50-nm resolution using high-harmonic radiation. This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.

[1]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[2]  K. Zhao,et al.  The generation, characterization and applications of broadband isolated attosecond pulses , 2014, Nature Photonics.

[3]  J. Kirz,et al.  Biological imaging by soft x-ray diffraction microscopy , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[5]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[6]  Randy A. Bartels,et al.  Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths , 2002, Science.

[7]  Jun Ye,et al.  Extreme ultraviolet radiation with coherence time greater than 1 s , 2014, Nature Photonics.

[8]  Guido Meier,et al.  Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. , 2007, Physical review letters.

[9]  Gil Ilan Haham,et al.  In-line production of a bi-circular field for generation of helically polarized high-order harmonics , 2016 .

[10]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[11]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[12]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[13]  P. Midgley,et al.  Electron tomography and holography in materials science. , 2009, Nature materials.

[14]  P. Zeitoun,et al.  Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network , 2012, Nature Communications.

[15]  S. Hädrich,et al.  Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. , 2007, Physical review letters.

[16]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[17]  J. Åkerman,et al.  Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers , 2015 .

[18]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[19]  Pavel Sidorenko,et al.  Spin angular momentum and tunable polarization in high-harmonic generation , 2014, Nature Photonics.

[20]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[21]  Long,et al.  Model calculations of polarization-dependent two-color high-harmonic generation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  S. Nepijko,et al.  Time-resolved photoemission electron microscopy of magnetic field and magnetisation changes , 2003 .

[23]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[24]  Michael D. Schneider,et al.  Dynamics and inertia of skyrmionic spin structures , 2015, Nature Physics.

[25]  Justin M. Shaw,et al.  Ultrafast element-specific magnetization dynamics of complex magnetic materials on a table-top , 2012 .

[26]  J. Miao,et al.  Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method , 2003 .

[27]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[28]  S. Eisebitt,et al.  Multi-color imaging of magnetic Co/Pt heterostructures , 2017, Structural dynamics.

[29]  Joachim Stöhr,et al.  Magnetism From Fundamentals to Nanoscale Dynamics , 2006 .

[30]  P. Corkum,et al.  Octave-spanning hyperspectral coherent diffractive imaging in the extreme ultraviolet range. , 2015, Optics express.

[31]  Justin M. Shaw,et al.  Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics , 2014, Nature Photonics.

[32]  Stefan Eisebitt,et al.  High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength , 2013 .

[33]  S. Eisebitt,et al.  Lensless imaging of magnetic nanostructures by X-ray spectro-holography , 2004, Nature.

[34]  Pochi Yeh,et al.  Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) , 1997 .

[35]  T. Latychevskaia,et al.  When holography meets coherent diffraction imaging. , 2011, Optics express.

[36]  M. Howells,et al.  Coherence and sampling requirements for diffractive imaging. , 2004, Ultramicroscopy.

[37]  T. Ejima,et al.  Magnetic rotation spectra of Co/Pt and Co/Cu multilayers in 50–90 eV region , 2005 .

[38]  Yimei Zhu Modern techniques for characterizing magnetic materials , 2005 .

[39]  S. Marchesini,et al.  Phase Aberrations in Diffraction Microscopy , 2005, physics/0510033.

[40]  J. Biegert,et al.  High-flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-μm 1-kHz pulses for carbon K-edge spectroscopy. , 2014, Optics letters.

[41]  J. Miao,et al.  Beyond crystallography: Diffractive imaging using coherent x-ray light sources , 2015, Science.

[42]  C. Leighton Modern Techniques for Characterizing Magnetic Materials , 2005 .

[43]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[44]  Jie Li,et al.  Polarization gating of high harmonic generation in the water window , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[45]  Charles Edward Connor,et al.  Reconstructing a 3D World , 2002, Science.

[46]  S. Marchesini,et al.  High-resolution ab initio three-dimensional x-ray diffraction microscopy. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[48]  H. Mertins,et al.  Faraday rotation spectra at shallow core levels: 3p edges of Fe, Co, and Ni , 2006 .

[49]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[50]  Jean-Pierre Wolf,et al.  Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source , 2017, Science.

[51]  M M Murnane,et al.  Tabletop soft-x-ray Fourier transform holography with 50 nm resolution. , 2009, Optics letters.

[52]  V. Tenner,et al.  Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths , 2014, Light: Science & Applications.

[53]  J. Kirz,et al.  High-Resolution Imaging by Fourier Transform X-ray Holography , 1992, Science.

[54]  Long,et al.  Polarization-dependent high-order two-color mixing. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[55]  T. Salditt,et al.  Miniaturized beamsplitters realized by X-ray waveguides. , 2016, Acta crystallographica. Section A, Foundations and advances.

[56]  Tim Salditt,et al.  Coherent diffractive imaging beyond the projection approximation: waveguiding at extreme ultraviolet wavelengths. , 2015, Optics express.

[57]  Polarization contrast of nanoscale waveguides in high harmonic imaging , 2016 .

[58]  P. Fischer Frontiers in imaging magnetism with polarized x-rays , 2015, Front. Phys..