Coordinated Progression through Two Subtranscriptomes Underlies the Tachyzoite Cycle of Toxoplasma gondii

Background Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. Methodology/Principal Findings Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. Conclusion/Significance Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.

[1]  A. Naguleswaran,et al.  A decade of epigenetic research in Toxoplasma gondii. , 2010, Molecular and biochemical parasitology.

[2]  John C. Wootton,et al.  The Construction and Use of Log-Odds Substitution Scores for Multiple Sequence Alignment , 2010, PLoS Comput. Biol..

[3]  Masao Yuda,et al.  Transcription factor AP2‐Sp and its target genes in malarial sporozoites , 2010, Molecular microbiology.

[4]  Richard Bartfai,et al.  A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology , 2010, PLoS pathogens.

[5]  O. Alter,et al.  Global effects of DNA replication and DNA replication origin activity on eukaryotic gene expression , 2009, Molecular systems biology.

[6]  Michael S. Behnke,et al.  Phenotypic and Gene Expression Changes among Clonal Type I Strains of Toxoplasma gondii , 2009, Eukaryotic Cell.

[7]  Hervé Hogues,et al.  Transcriptional analysis of the Candida albicans cell cycle. , 2009, Molecular biology of the cell.

[8]  Ariele Viacava Follis,et al.  Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. , 2009, Journal of the American Chemical Society.

[9]  P. Baldacci,et al.  Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites , 2009, The Journal of experimental medicine.

[10]  Masao Yuda,et al.  Identification of a transcription factor in the mosquito‐invasive stage of malaria parasites , 2009, Molecular microbiology.

[11]  M. Huynh,et al.  Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80 , 2009, Eukaryotic Cell.

[12]  J. Gigley,et al.  Efficient Gene Replacements in Toxoplasma gondii Strains Deficient for Nonhomologous End Joining , 2009, Eukaryotic Cell.

[13]  A. Pain,et al.  Proteomes and transcriptomes of the Apicomplexa--where's the message? , 2009, International journal for parasitology.

[14]  J. Kissinger,et al.  Identification and functional characterization of cis-regulatory elements in the apicomplexan parasite Toxoplasma gondii , 2009, Genome Biology.

[15]  Stephen C. Billups,et al.  Identifying significant temporal variation in time course microarray data without replicates , 2008, BMC Bioinformatics.

[16]  M. Gubbels,et al.  The cell cycle and Toxoplasma gondii cell division: tightly knit or loosely stitched? , 2008, International journal for parasitology.

[17]  Bradley I. Coleman,et al.  Transcriptional control and gene silencing in Plasmodium falciparum , 2008, Cellular microbiology.

[18]  Steven B. Haase,et al.  Transcription network and cyclin/CDKs: The yin and yang of cell cycle oscillators , 2008, Cell cycle.

[19]  Kami Kim,et al.  The Prodomain of Toxoplasma gondii GPI‐Anchored Subtilase TgSUB1 Mediates its Targeting to Micronemes , 2008, Traffic.

[20]  L. Willmitzer,et al.  Global mRNA changes in microarray experiments , 2008, Nature Biotechnology.

[21]  P. Bork,et al.  Circular reasoning rather than cyclic expression , 2008, Genome Biology.

[22]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[23]  Michael S. Behnke,et al.  The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements , 2008, Molecular microbiology.

[24]  D. Roos,et al.  Organellar dynamics during the cell cycle of Toxoplasma gondii , 2008, Journal of Cell Science.

[25]  B. Striepen,et al.  Forward Genetic Analysis of the Apicomplexan Cell Division Cycle in Toxoplasma gondii , 2008, PLoS pathogens.

[26]  Haiming Wang,et al.  ToxoDB: an integrated Toxoplasma gondii database resource , 2007, Nucleic Acids Res..

[27]  M. White,et al.  Inhibition of Toxoplasma gondii growth by pyrrolidine dithiocarbamate is cell cycle specific and leads to population synchronization. , 2008, Molecular and biochemical parasitology.

[28]  L. Aravind,et al.  Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. , 2008, International journal for parasitology.

[29]  Matthias E. Futschik,et al.  Are we Overestimating the Number of Cell-Cycling Genes? The Impact of Background Models , 2008, German Conference on Bioinformatics.

[30]  M. Ferdig,et al.  Quantitative dissection of clone-specific growth rates in cultured malaria parasites. , 2007, International journal for parasitology.

[31]  H. K. Dai,et al.  A survey of DNA motif finding algorithms , 2007, BMC Bioinformatics.

[32]  N. Slonim,et al.  A universal framework for regulatory element discovery across all genomes and data types. , 2007, Molecular cell.

[33]  G. V. van Dooren,et al.  Building the Perfect Parasite: Cell Division in Apicomplexa , 2007, PLoS pathogens.

[34]  F. Cross,et al.  Ribosome biogenesis is sensed at the Start cell cycle checkpoint. , 2007, Molecular biology of the cell.

[35]  Michael S. Behnke,et al.  A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii , 2006, Science.

[36]  J. Welagen,et al.  The complete set of Toxoplasma gondii ribosomal protein genes contains two conserved promoter elements , 2006, Parasitology.

[37]  Wenxuan Zhong,et al.  A data-driven clustering method for time course gene expression data , 2006, Nucleic acids research.

[38]  Aaron J Mackey,et al.  The transcriptome of Toxoplasma gondii , 2005, BMC Biology.

[39]  Aaron T. Smith,et al.  Histone-Modifying Complexes Regulate Gene Expression Pertinent to the Differentiation of the Protozoan Parasite Toxoplasma gondii , 2005, Molecular and Cellular Biology.

[40]  J. Bähler Cell-cycle control of gene expression in budding and fission yeast. , 2005, Annual review of genetics.

[41]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[42]  D. Soldati,et al.  The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. , 2005, Microbes and infection.

[43]  Kamolrat Silamut,et al.  Estimation of the Total Parasite Biomass in Acute Falciparum Malaria from Plasma PfHRP2 , 2005, PLoS medicine.

[44]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[45]  Michael S. Behnke,et al.  Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. , 2005, Molecular and biochemical parasitology.

[46]  M. Mortuaire,et al.  Transcriptional regulation of two stage-specifically expressed genes in the protozoan parasite Toxoplasma gondii , 2005, Nucleic Acids Research.

[47]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[48]  M. Tyers,et al.  A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. , 2004, Genes & development.

[49]  A. D. Sagar,et al.  Transcript initiation, polyadenylation, and functional promoter mapping for the dihydrofolate reductase-thymidylate synthase gene of Toxoplasma gondii. , 2004, Molecular and biochemical parasitology.

[50]  C. Ouzounis,et al.  Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. , 2004, Genome research.

[51]  Kami Kim,et al.  Identification and characterisation of a regulatory region in the Toxoplasma gondii hsp70 genomic locus. , 2004, International journal for parasitology.

[52]  M. White,et al.  A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. , 2003, Molecular and biochemical parasitology.

[53]  Kerby Shedden,et al.  Microarray analysis of gene expression during the cell cycle , 2003, Cell & chromosome.

[54]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[55]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[56]  Zhilin Qu,et al.  Regulation of the mammalian cell cycle: a model of the G1-to-S transition. , 2003, American journal of physiology. Cell physiology.

[57]  Christos A Ouzounis,et al.  The phylogenetic diversity of eukaryotic transcription. , 2003, Nucleic acids research.

[58]  L. Breeden,et al.  Periodic Transcription: A Cycle within a Cycle , 2003, Current Biology.

[59]  Tommi S. Jaakkola,et al.  Continuous Representations of Time-Series Gene Expression Data , 2003, J. Comput. Biol..

[60]  J. Boothroyd,et al.  Toxoplasma gondii Asexual Development: Identification of Developmentally Regulated Genes and Distinct Patterns of Gene Expression , 2002, Eukaryotic Cell.

[61]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[62]  J. Boothroyd,et al.  Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction , 2002, Molecular microbiology.

[63]  D. Roos,et al.  Daughter cell assembly in the protozoan parasite Toxoplasma gondii. , 2002, Molecular biology of the cell.

[64]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[65]  D. Roos,et al.  Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. , 2001, Molecular and biochemical parasitology.

[66]  S. Iuchi,et al.  Three classes of C2H2 zinc finger proteins , 2001, Cellular and Molecular Life Sciences CMLS.

[67]  D. Roos,et al.  The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes , 2000, The Journal of cell biology.

[68]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Reed,et al.  Two genes encoding unique proliferating-cell-nuclear-antigens are expressed in Toxoplasma gondii. , 2000, Molecular and biochemical parasitology.

[70]  P. Newton,et al.  Parasite multiplication potential and the severity of Falciparum malaria. , 2000, The Journal of infectious diseases.

[71]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[72]  M. White,et al.  A cell cycle model for the tachyzoite of Toxoplasma gondii using the Herpes simplex virus thymidine kinase. , 1998, Molecular and biochemical parasitology.

[73]  A. Thomas,et al.  Precise Timing of Expression of a Plasmodium falciparum-derived Transgene in Plasmodium berghei Is a Critical Determinant of Subsequent Subcellular Localization* , 1998, The Journal of Biological Chemistry.

[74]  K. Gull,et al.  The Plasmodium cell-cycle: facts and questions. , 1998, Annals of tropical medicine and parasitology.

[75]  L. Lecordier,et al.  Common cis‐acting elements critical for the expression of several genes of Toxoplasma gondii , 1996, Molecular microbiology.

[76]  D. Roos,et al.  Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. , 1994, Methods in cell biology.

[77]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.

[78]  S. Moore Kinetic evidence for a critical rate of protein synthesis in the Saccharomyces cerevisiae yeast cell cycle. , 1988, The Journal of biological chemistry.

[79]  M. Shirley,et al.  The endogenous development of virulent strains and attenuated precocious lines of Eimeria tenella and E. necatrix. , 1987, The Journal of parasitology.

[80]  M. Shirley,et al.  Eimeria maxima: characteristics of attenuated lines obtained by selection for precocious development in the chicken. , 1986, Experimental parasitology.

[81]  M. de Rojas,et al.  Temporal relationships on macromolecular synthesis during the asexual cell cycle of Plasmodium falciparum. , 1985, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[82]  R. Reese,et al.  Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum , 1984, Journal of bacteriology.

[83]  M. Melamed,et al.  Subcompartments of the G1 phase of cell cycle detected by flow cytometry. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[84]  L. Hartwell,et al.  Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division , 1977, The Journal of cell biology.

[85]  M. L. Melton,et al.  The fine structure and reproduction of Toxoplasma gondii. , 1968, The Journal of parasitology.

[86]  J. Sénaud [The ultrastructure of the micropyle of Toxoplasmasida]. , 1966, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.